Socket
Book a DemoInstallSign in
Socket

llama-index-embeddings-bedrock

Package Overview
Dependencies
Maintainers
1
Versions
19
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

llama-index-embeddings-bedrock

llama-index embeddings bedrock integration

pipPyPI
Version
0.7.0
Maintainers
1

LlamaIndex Embeddings Integration: Bedrock

This integration provides support for AWS Bedrock embedding models through LlamaIndex.

Installation

pip install llama-index-embeddings-bedrock

Usage

from llama_index.embeddings.bedrock import BedrockEmbedding

# Initialize the embedding model
embed_model = BedrockEmbedding(
    model_name="cohere.embed-english-v3",
    region_name="us-east-1",
)

# Get a single embedding
embedding = embed_model.get_text_embedding("Hello world")

# Get batch embeddings
embeddings = embed_model.get_text_embedding_batch(["Hello", "World"])

Supported Models

Amazon Titan

  • amazon.titan-embed-text-v1
  • amazon.titan-embed-text-v2:0
  • amazon.titan-embed-g1-text-02

Cohere

  • cohere.embed-english-v3
  • cohere.embed-multilingual-v3
  • cohere.embed-v4:0 (multimodal, supports text and images)

To list all supported models:

from llama_index.embeddings.bedrock import BedrockEmbedding

supported_models = BedrockEmbedding.list_supported_models()
print(supported_models)

Configuration

You can configure AWS credentials in several ways:

# Option 1: Pass credentials directly
embed_model = BedrockEmbedding(
    model_name="cohere.embed-english-v3",
    aws_access_key_id="YOUR_ACCESS_KEY",
    aws_secret_access_key="YOUR_SECRET_KEY",
    region_name="us-east-1",
)

# Option 2: Use AWS profile
embed_model = BedrockEmbedding(
    model_name="cohere.embed-english-v3",
    profile_name="your-aws-profile",
    region_name="us-east-1",
)

# Option 3: Use environment variables (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
embed_model = BedrockEmbedding(
    model_name="cohere.embed-english-v3",
)

Cohere v4 Support

This integration supports both Cohere v3 and v4 embedding models, including the new multimodal cohere.embed-v4:0 model. The integration automatically detects and handles different response formats (v3 and v4), maintaining full backward compatibility.

# Using Cohere v4 model
embed_model = BedrockEmbedding(
    model_name="cohere.embed-v4:0",
    region_name="us-east-1",
)

# Text embeddings work seamlessly
embeddings = embed_model.get_text_embedding_batch(
    ["Hello world", "Another document"]
)

Note: Cohere v4 introduces a new response format that wraps embeddings in a float key when multiple embedding types are requested. This integration handles both the v3 format ({"embeddings": [[...]]}) and v4 formats ({"embeddings": {"float": [[...]]}} or {"float": [[...]]}) automatically.

Examples

For more examples, see the Bedrock Embeddings notebook.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts