New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

llama-index-llms-mistralai

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

llama-index-llms-mistralai

llama-index llms mistral ai integration

  • 0.4.0
  • PyPI
  • Socket score

Maintainers
1

LlamaIndex Llms Integration: Mistral

Installation

Install the required packages using the following commands:

%pip install llama-index-llms-mistralai
!pip install llama-index

Basic Usage

Initialize the MistralAI Model

To use the MistralAI model, create an instance and provide your API key:

from llama_index.llms.mistralai import MistralAI

llm = MistralAI(api_key="<replace-with-your-key>")

Generate Completions

To generate a text completion for a prompt, use the complete method:

resp = llm.complete("Paul Graham is ")
print(resp)

Chat with the Model

You can also chat with the model using a list of messages. Here’s an example:

from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(role="system", content="You are CEO of MistralAI."),
    ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = MistralAI().chat(messages)
print(resp)

Using Random Seed

To set a random seed for reproducibility, initialize the model with the random_seed parameter:

resp = MistralAI(random_seed=42).chat(messages)
print(resp)

Streaming Responses

Stream Completions

You can stream responses using the stream_complete method:

resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Stream Chat Responses

To stream chat messages, use the following code:

messages = [
    ChatMessage(role="system", content="You are CEO of MistralAI."),
    ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

To use a specific model configuration, initialize the model with the desired model name:

llm = MistralAI(model="mistral-medium")
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Function Calling

You can call functions from the model by defining tools. Here’s an example:

from llama_index.llms.mistralai import MistralAI
from llama_index.core.tools import FunctionTool


def multiply(a: int, b: int) -> int:
    """Multiply two integers and return the result."""
    return a * b


def mystery(a: int, b: int) -> int:
    """Mystery function on two integers."""
    return a * b + a + b


mystery_tool = FunctionTool.from_defaults(fn=mystery)
multiply_tool = FunctionTool.from_defaults(fn=multiply)

llm = MistralAI(model="mistral-large-latest")
response = llm.predict_and_call(
    [mystery_tool, multiply_tool],
    user_msg="What happens if I run the mystery function on 5 and 7",
)
print(str(response))

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/mistralai/

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc