LLM Compressor
llmcompressor
is an easy-to-use library for optimizing models for deployment with vllm
, including:
- Comprehensive set of quantization algorithms for weight-only and activation quantization
- Seamless integration with Hugging Face models and repositories
safetensors
-based file format compatible with vllm
- Large model support via
accelerate
✨ Read the announcement blog here! ✨
Supported Formats
- Activation Quantization: W8A8 (int8 and fp8)
- Mixed Precision: W4A16, W8A16
- 2:4 Semi-structured and Unstructured Sparsity
Supported Algorithms
- Simple PTQ
- GPTQ
- SmoothQuant
- SparseGPT
Installation
pip install llmcompressor
Get Started
End-to-End Examples
Applying quantization with llmcompressor
:
User Guides
Deep dives into advanced usage of llmcompressor
:
Quick Tour
Let's quantize TinyLlama
with 8 bit weights and activations using the GPTQ
and SmoothQuant
algorithms.
Note that the model can be swapped for a local or remote HF-compatible checkpoint and the recipe
may be changed to target different quantization algorithms or formats.
Apply Quantization
Quantization is applied by selecting an algorithm and calling the oneshot
API.
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(scheme="W8A8", targets="Linear", ignore=["lm_head"]),
]
oneshot(
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
dataset="open_platypus",
recipe=recipe,
output_dir="TinyLlama-1.1B-Chat-v1.0-INT8",
max_seq_length=2048,
num_calibration_samples=512,
)
Inference with vLLM
The checkpoints created by llmcompressor
can be loaded and run in vllm
:
Install:
pip install vllm
Run:
from vllm import LLM
model = LLM("TinyLlama-1.1B-Chat-v1.0-INT8")
output = model.generate("My name is")
Questions / Contribution
- If you have any questions or requests open an issue and we will add an example or documentation.
- We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.