Socket
Book a DemoInstallSign in
Socket

llmswap

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

llmswap

Complete AI CLI Suite + Python SDK. 5 Terminal AI Tools: ask, chat, review, debug, logs. Multi-provider LLM interface supporting OpenAI GPT-4, Claude, Gemini, IBM WatsonX, Ollama. Built for developers, DevOps, students. Features AI CLI debugger, terminal code review, log analysis. 50-90% cost savings through intelligent caching.

3.2.1
pipPyPI
Maintainers
1

llmswap - Complete AI CLI Suite + Python SDK

PyPI version pip install llmswap PyPI Downloads Python 3.8+ License: MIT

Two Powerful Interfaces: 5 AI CLI Tools + Complete Python SDK

🚀 Terminal AI Suite - No Browser Required

# Install once, get 5 AI CLI tools
pip install llmswap

# 1. One-line AI assistant
llmswap ask "How to optimize PostgreSQL queries?"

# 2. Interactive AI chat  
llmswap chat

# 3. AI code reviewer
llmswap review app.py --focus security

# 4. AI debugger
llmswap debug --error "ConnectionTimeout: Connection timed out"

# 5. AI log analyzer
llmswap logs --analyze /var/log/app.log --since "2h ago"

📦 Python SDK for Applications

pip install llmswap
from llmswap import LLMClient

client = LLMClient()  # Auto-detects OpenAI, Claude, Gemini, etc.
response = client.query("Analyze this data trend")
print(response.content)

Complete AI-powered development workflow in your terminal + Python library for applications

What's New in v3.0.0

Command Line Interface (NEW!)

# Install once, use everywhere
pip install llmswap

# Universal AI workflows for any use case
llmswap ask "Write a professional email response"
llmswap ask "Analyze this sales data trend"
llmswap ask "Explain quantum physics simply"
llmswap review myfile.py --focus security  
llmswap debug --error "ConnectionError: timeout"
llmswap chat  # Interactive AI assistant

Python SDK Features

  • Multi-provider support - Anthropic, OpenAI, Google Gemini, IBM watsonx, Ollama
  • Response caching - Save 50-90% on API costs with intelligent caching
  • Auto-fallback - Automatic provider switching when one fails
  • Zero configuration - Works with environment variables out of the box
  • Async support - Non-blocking operations with streaming responses
  • Thread-safe - Safe for concurrent applications and multi-user environments

Perfect for Hackathons & Students

Built from hackathon experience to help developers ship faster:

  • Move Fast - One line setup, focus on your idea not infrastructure
  • Stay Within Budget - Python SDK offers cost savings for repeated queries
  • Experiment Freely - Switch between providers instantly, find what works
  • Scale Easily - Start with free tiers, upgrade when needed
  • Multi-User Ready - Build apps that serve your whole team/class
  • Learn Best Practices - Production-ready patterns from day one
# Perfect hackathon starter - works with any API key you have
from llmswap import LLMClient

client = LLMClient(cache_enabled=True)  # Save money from day 1
response = client.query("Help me build an AI-powered app")
print(response.content)

CLI Quick Start

Installation

pip install llmswap

Set API Key

# Choose your provider (any one is enough)
export ANTHROPIC_API_KEY="your-anthropic-key"
export OPENAI_API_KEY="your-openai-key"  
export GEMINI_API_KEY="your-gemini-key"

CLI Commands

# Ask questions
llmswap ask "What is Docker?"
llmswap ask "How to optimize SQL queries?" --provider openai

# Interactive chat
llmswap chat

# Code review with AI
llmswap review app.py --focus security
llmswap review script.js --focus performance  
llmswap review main.go --focus bugs

# Debug assistance
llmswap debug --error "TypeError: 'NoneType' object is not callable"
llmswap debug --error "ECONNREFUSED: Connection refused"

# Get help
llmswap --help
llmswap review --help

Production Examples

# DevOps workflows
llmswap ask "Why is my Node.js app using too much memory?"
llmswap debug --error "Error: listen EADDRINUSE: address already in use :::3000"

# Code review automation
find . -name "*.py" -exec llmswap review {} --focus security --quiet \;

# Daily development
llmswap ask "Best practices for REST API design"
llmswap review pull_request.diff --focus style

Python SDK Quick Start

Installation

pip install llmswap

Basic Usage

from llmswap import LLMClient

client = LLMClient()
response = client.query("What is Python?")
print(response.content)

Set API Keys

# Choose your provider
export ANTHROPIC_API_KEY="your-key-here"
# OR
export OPENAI_API_KEY="your-key-here"  
# OR
export GEMINI_API_KEY="your-key-here"
# OR
export WATSONX_API_KEY="your-ibm-api-key"
export WATSONX_PROJECT_ID="your-project-id"
# OR run Ollama locally

Usage Examples

Async Support (New in v2.0)

import asyncio
from llmswap import AsyncLLMClient

async def main():
    client = AsyncLLMClient(provider="openai")
    
    # Async query
    response = await client.query("Explain quantum computing")
    print(response.content)
    
    # Streaming response
    print("Streaming: ", end="")
    async for chunk in client.stream("Write a haiku"):
        print(chunk, end="", flush=True)

asyncio.run(main())

Response Caching (New in v2.1)

What is Response Caching?
Intelligent caching stores LLM responses temporarily to avoid repeated expensive API calls for identical queries.

Default State: DISABLED (for security in multi-user environments)

Key Advantages:

  • Massive cost savings: 50-90% reduction in API costs
  • Lightning speed: 100,000x+ faster responses (0.001s vs 1-3s)
  • Rate limit protection: Avoid hitting API limits
  • Reliability: Serve cached responses even if API is down

Basic Usage

from llmswap import LLMClient

# Step 1: Enable caching (disabled by default)
client = LLMClient(cache_enabled=True)

# First call: hits API ($$$)
response = client.query("What is machine learning?")
print(f"From cache: {response.from_cache}")  # False

# Identical call: returns from cache (FREE!)
response = client.query("What is machine learning?")  
print(f"From cache: {response.from_cache}")  # True

Advanced Configuration

# Customize cache behavior
client = LLMClient(
    cache_enabled=True,
    cache_ttl=3600,        # 1 hour expiry
    cache_max_size_mb=50   # Memory limit
)

# Multi-user security: separate cache per user
response = client.query(
    "Show my account balance",
    cache_context={"user_id": "user123"}
)

# Per-query settings
response = client.query(
    "Current weather",
    cache_ttl=300,         # 5 minutes for weather
    cache_bypass=True      # Force fresh API call
)

# Monitor performance
stats = client.get_cache_stats()
print(f"Hit rate: {stats['hit_rate']}%")
print(f"Cost savings: ~{stats['hit_rate']}%")

Security for Multi-User Applications

# WRONG: Shared cache (security risk)
client = LLMClient(cache_enabled=True)
client.query("Show my private data")  # User A
client.query("Show my private data")  # User B gets User A's data!

# RIGHT: Context-aware caching
client.query("Show my private data", cache_context={"user_id": current_user.id})

When to Use Caching:

  • Single-user applications
  • Public/educational content queries
  • FAQ bots and documentation assistants
  • Development and testing (save API costs)

When NOT to Use:

  • Multi-user apps without context isolation
  • Real-time data queries (stock prices, weather)
  • Personalized responses without user context

Request Logging (New in v2.0)

from llmswap import AsyncLLMClient

# Enable logging to file
client = AsyncLLMClient(
    provider="anthropic",
    log_file="/tmp/requests.log",
    log_level="info"
)

# All requests and responses are logged with metadata
response = await client.query("Hello world")

# Logs include: timestamp, provider, model, latency, token counts

Provider Auto-Detection

from llmswap import LLMClient

client = LLMClient()
print(f"Using: {client.get_current_provider()}")

response = client.query("Explain machine learning")
print(response.content)

Specify Provider

client = LLMClient(provider="anthropic")
client = LLMClient(provider="openai")
client = LLMClient(provider="gemini")
client = LLMClient(provider="ollama")

Custom Models

client = LLMClient(provider="anthropic", model="claude-3-opus-20240229")
client = LLMClient(provider="openai", model="gpt-4")
client = LLMClient(provider="gemini", model="gemini-1.5-pro")

Provider Switching

client = LLMClient(provider="anthropic")

client.set_provider("openai")
client.set_provider("gemini", model="gemini-1.5-flash")

Response Details

response = client.query("What is OpenStack?")

print(f"Content: {response.content}")
print(f"Provider: {response.provider}")
print(f"Model: {response.model}")
print(f"Latency: {response.latency:.2f}s")

Automatic Fallback

client = LLMClient(fallback=True)
response = client.query("Hello world")
print(f"Succeeded with: {response.provider}")

Supported Providers

ProviderModelsSetup
AnthropicClaude 3 (Sonnet, Haiku, Opus)export ANTHROPIC_API_KEY=...
OpenAIGPT-3.5, GPT-4, GPT-4oexport OPENAI_API_KEY=...
GoogleGemini 1.5 (Flash, Pro)export GEMINI_API_KEY=...
Ollama100+ local models (see below)Run Ollama locally
IBM watsonxGranite, Llama, and foundation modelsexport WATSONX_API_KEY=...

GPT-OSS Support (OpenAI's Open-Weight Models)

OpenAI's new open-source models are now supported via Ollama:

# Pull the model first: ollama pull gpt-oss-20b
client = LLMClient(provider="ollama", model="gpt-oss-20b")
client = LLMClient(provider="ollama", model="gpt-oss-120b")

# Run reasoning tasks locally
response = client.query("Solve this step by step: What is 47 * 23?")

GPT-OSS (OpenAI Open-Weight)

  • gpt-oss-20b - Efficient 20B reasoning model (16GB RAM)
  • gpt-oss-120b - Advanced 120B model (80GB VRAM)

Llama Family

  • llama3.2 (1B, 3B, 8B, 70B, 90B)
  • llama3.1 (8B, 70B, 405B)
  • llava-llama3 (Vision + Language)

Mistral Models

  • mistral (7B)
  • mistral-nemo (12B)
  • mistral-small (22B)
  • codestral (22B - Code specialist)

Google Gemma

  • gemma2 (2B, 9B, 27B)
  • gemma3 (Latest from Google)

Qwen Series

  • qwen2.5 (0.5B, 1.5B, 3B, 7B, 14B, 32B)
  • qwen2.5-coder (Code specialist)
  • qwq (32B - Reasoning model)

Microsoft Phi

  • phi3 (3.8B - Efficient small model)
  • phi4 (14B - Advanced reasoning)

Other Popular Models

  • granite-code (IBM - Code generation)
  • deepseek-coder (Code specialist)
  • zephyr (Assistant fine-tuned)
  • smollm2 (135M, 360M, 1.7B)

Ollama Usage Examples

# Any Ollama model works out of the box
client = LLMClient(provider="ollama", model="llama3.2")
client = LLMClient(provider="ollama", model="mistral-nemo")
client = LLMClient(provider="ollama", model="qwen2.5-coder")
client = LLMClient(provider="ollama", model="phi4")

# Check what models you have locally
# ollama list

# Pull new models
# ollama pull mistral-nemo
# ollama pull gpt-oss-20b

IBM watsonx Integration

Enterprise-grade AI with IBM's foundation models:

# Set environment variables
# export WATSONX_API_KEY="your-ibm-cloud-api-key"
# export WATSONX_PROJECT_ID="your-project-id"

client = LLMClient(provider="watsonx")
client = LLMClient(provider="watsonx", model="ibm/granite-3-8b-instruct")

# Popular watsonx models
client = LLMClient(provider="watsonx", model="ibm/granite-3-8b-instruct")
client = LLMClient(provider="watsonx", model="meta-llama/llama-3-70b-instruct")
client = LLMClient(provider="watsonx", model="mistralai/mixtral-8x7b-instruct-v01")

response = client.query("Analyze this business data and provide insights")

Practical Examples & CLI Tools

The package includes ready-to-use examples and CLI tools for common developer workflows:

Available Examples

Developer Workflow Tools

  • cli_assistant.py - Full-featured CLI with interactive mode and commands
  • code_reviewer.py - AI-powered code review with focus areas (bugs, security, style)
  • debug_helper.py - Error analysis, stack trace interpretation, debugging strategies
  • provider_comparison.py - Compare responses from different LLM providers

Cost Optimization & Performance

  • smart_cost_optimizer.py - Demonstrates cost savings through caching (Python SDK)
  • quick_chat.py - Minimal chat interface showing llmswap simplicity
  • ask - One-liner CLI script for quick questions

Getting Started

  • basic_usage.py - Simple integration examples
  • hackathon_starter.py - Perfect starting point for hackathons and student projects

Quick CLI Usage

# One-liner questions  
./examples/ask "What is Python?"
./examples/ask "Explain machine learning"

# Interactive chat
python examples/cli_assistant.py

# Code review
python examples/code_reviewer.py myfile.py --focus security
python examples/code_reviewer.py --language javascript --focus bugs < script.js

# Debug assistance
python examples/debug_helper.py --error "IndexError: list index out of range"
python examples/debug_helper.py --stack-trace "$(cat error.log)"

# Provider comparison
python examples/provider_comparison.py

# Cost optimization demo
python examples/smart_cost_optimizer.py

Integration Examples

Chatbot Integration

from llmswap import LLMClient

class SimpleChatbot:
    def __init__(self):
        self.llm = LLMClient()
        
    def chat(self, message):
        response = self.llm.query(f"User: {message}\nAssistant:")
        return response.content
        
    def get_provider(self):
        return f"Using {self.llm.get_current_provider()}"

# Usage
bot = SimpleChatbot()
print(bot.chat("Hello!"))
print(bot.get_provider())

Migration from Existing Code

# BEFORE: Direct provider usage
import openai
client = openai.OpenAI()
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello"}]
)
content = response.choices[0].message.content

# AFTER: llmswap (works with any provider!)
from llmswap import LLMClient
client = LLMClient()
response = client.query("Hello")
content = response.content

Configuration

Environment Variables

# API Keys (set at least one)
export ANTHROPIC_API_KEY="your-anthropic-key"
export OPENAI_API_KEY="your-openai-key"
export GEMINI_API_KEY="your-gemini-key"

# IBM watsonx (enterprise models)
export WATSONX_API_KEY="your-ibm-cloud-api-key"
export WATSONX_PROJECT_ID="your-watsonx-project-id"

# Ollama (if using local models)
export OLLAMA_URL="http://localhost:11434"  # default

Programmatic Configuration

# With API key
client = LLMClient(
    provider="anthropic", 
    api_key="your-key-here"
)

# With custom model
client = LLMClient(
    provider="openai",
    model="gpt-4-turbo-preview"
)

# Disable fallback
client = LLMClient(fallback=False)

Advanced Features

Check Available Providers

client = LLMClient()

# List configured providers
available = client.list_available_providers()
print(f"Available: {available}")

# Check specific provider
if client.is_provider_available("anthropic"):
    client.set_provider("anthropic")

License

MIT License - see LICENSE file for details.

Star this repo if llmswap helps simplify your language model integration.

Keywords

academic

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.