Security News
Opengrep Emerges as Open Source Alternative Amid Semgrep Licensing Controversy
Opengrep forks Semgrep to preserve open source SAST in response to controversial licensing changes.
llmtranslate is a Python library designed to identify the language of a given text and translate text between multiple languages using OpenAI's GPT-4o. The library is especially useful for translating text containing multiple languages into a single target language.
Comprehensive documentation, including detailed usage information, is available at https://llm-translate.com
To use this library, you must have an OpenAI API key. This key allows the library to utilize OpenAI's GPT-4o for translation and language detection.
You can install the llmtranslate library from PyPI:
pip install llmtranslate
Before using llmtranslate with OpenAI, you need to set your OpenAI API key. You can do this by creating an instance of the TranslatorOpenAI class.
from llmtranslate import TranslatorOpenAI
# Set your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")
To detect the language of a given text:
from llmtranslate import TranslatorOpenAI
# Set your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")
# Detect language
detected_language = translator.get_text_language("Hello world")
if detected_language is not None:
print(detected_language.ISO_639_1_code) # Output: 'en'
print(detected_language.ISO_639_2_code) # Output: 'eng'
print(detected_language.ISO_639_3_code) # Output: 'eng'
print(detected_language.language_name) # Output: 'English'
[!IMPORTANT] If the translator does not detect any language, it will return None.
Before using results of translator detection you should check if it returned correct result or None
To translate text containing multiple languages into another language, you need to provide the ISO 639 language code for the target language. For a list of all ISO 639 language codes, you can refer to this ISO 639-1 code list website.
from llmtranslate import TranslatorOpenAI
# Set your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")
# Translate text
translated_text = translator.translate(
text="Cześć jak się masz? Meu nome é Adam",
to_language="en" # Use ISO 639-1 code for the target language
)
print(translated_text) # Output: "Hello how are you? My name is Adam"
Here is a complete example demonstrating how to use the library:
from llmtranslate import TranslatorOpenAI
# Initialize the translator with your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")
# Detect language
detected_language = translator.get_text_language("jak ty się nazywasz")
if detected_language is not None:
print(detected_language.ISO_639_1_code) # Output: 'pl'
print(detected_language.ISO_639_2_code) # Output: 'pol'
print(detected_language.ISO_639_3_code) # Output: 'pol'
print(detected_language.language_name) # Output 'Polish'
# Translate text
translated_text = translator.translate(
text="Cześć jak się masz? Meu nome é Adam",
to_language="en"
)
print(translated_text) # Output: "Hello how are you? My name is Adam"
The llmtranslate library provides access to various OpenAI models for translation. Below are the supported models and their use cases:
from llmtranslate import TranslatorOpenAI
# Recommended for precise translation, high-precision model
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o")
# A budget-friendly option, balancing cost and quality
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")
The llmtranslate
library provides asynchronous methods to allow you to perform language detection and translation tasks efficiently in an async environment. If your application uses asyncio
or another asynchronous framework, you can take full advantage of these async methods to avoid blocking your program while waiting for language detection or translation tasks to complete.
The following example demonstrates how to use the async_get_text_language
and async_translate_text
methods:
import asyncio
from llmtranslate import TranslatorOpenAI
# Initialize the translator with your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")
# Async function to detect language and translate text
async def detect_and_translate():
# Detect language asynchronously
detected_language = await translator.async_get_text_language("Hola, ¿cómo estás?")
if detected_language is not None:
print(detected_language.ISO_639_1_code) # Output: 'es'
print(detected_language.language_name) # Output: 'Spanish'
# Translate text asynchronously
translated_text = await translator.async_translate(
text="Cześć jak się masz? Meu nome é Adam",
to_language="en" # Use ISO 639-1 code for the target language
)
print(translated_text) # Output: "Hello how are you? My name is Adam"
# Run the async function
asyncio.run(detect_and_translate())
async_get_text_language(text: str)
:
This method detects the language of the provided text asynchronously.
text
: The input text whose language needs to be detected.TextLanguage
object containing the detected language's ISO 639-1, ISO 639-2, ISO 639-3 codes, and the language name.Example:
detected_language = await translator.async_get_text_language("Hallo, wie geht's?")
async_translate_text(text: str, to_language: str)
:
This method translates the input text asynchronously to the specified target language.
text
: The input text to be translated.to_language
: The target language in ISO 639-1 code.Example:
translated_text = await translator.async_translate("Bonjour tout le monde", "en")
Using asynchronous methods allows your application to handle multiple tasks concurrently, improving efficiency, especially when dealing with large amounts of text or performing multiple translations simultaneously. This non-blocking behavior is ideal for web services, APIs, and any scenario requiring high responsiveness.
Remember that asynchronous methods must be called within an async
function. To execute them, you can use asyncio.run()
as shown in the examples above.
If you are using Azure's OpenAI services, you need to set your Azure OpenAI API key along with additional required parameters. Use the TranslatorAzureOpenAI class for this.
from llmtranslate import TranslatorAzureOpenAI
# Set your Azure OpenAI API key and related parameters
translator = TranslatorAzureOpenAI(
azure_endpoint="YOUR_AZURE_ENDPOINT",
api_key="YOUR_AZURE_API_KEY",
api_version="YOUR_API_VERSION",
azure_deployment="YOUR_AZURE_DEPLOYMENT"
)
llmtranslate supports all languages supported by GPT-4o. For a complete list of language codes, you can visit the ISO 639-1 website.
Here is a table showing which languages are supported by gpt-4o and gpt4o-mini:
Language Name | Language Code | Supported by gpt-4o | Supported by gpt4o-mini |
---|---|---|---|
English | en | Yes | Yes |
Mandarin Chinese | zh | Yes | Yes |
Hindi | hi | Yes | Yes |
Spanish | es | Yes | Yes |
French | fr | Yes | Yes |
German | de | Yes | Yes |
Russian | ru | Yes | Yes |
Arabic | ar | Yes | Yes |
Italian | it | Yes | Yes |
Korean | ko | Yes | Yes |
Punjabi | pa | Yes | Yes |
Bengali | bn | Yes | Yes |
Portuguese | pt | Yes | Yes |
Indonesian | id | Yes | Yes |
Urdu | ur | Yes | Yes |
Persian (Farsi) | fa | Yes | Yes |
Vietnamese | vi | Yes | Yes |
Polish | pl | Yes | Yes |
Samoan | sm | Yes | Yes |
Thai | th | Yes | Yes |
Ukrainian | uk | Yes | Yes |
Turkish | tr | Yes | Yes |
Maori | mi | No | No |
Norwegian | no | Yes | Yes |
Dutch | nl | Yes | Yes |
Greek | el | Yes | Yes |
Romanian | ro | Yes | Yes |
Swahili | sw | Yes | Yes |
Hungarian | hu | Yes | Yes |
Hebrew | he | Yes | Yes |
Swedish | sv | Yes | Yes |
Czech | cs | Yes | Yes |
Finnish | fi | Yes | Yes |
Amharic | am | No | No |
Tagalog | tl | Yes | Yes |
Burmese | my | Yes | Yes |
Tamil | ta | Yes | Yes |
Kannada | kn | Yes | Yes |
Pashto | ps | Yes | Yes |
Yoruba | yo | Yes | Yes |
Malay | ms | Yes | Yes |
Haitian Creole | ht | Yes | Yes |
Nepali | ne | Yes | Yes |
Sinhala | si | Yes | Yes |
Catalan | ca | Yes | Yes |
Malagasy | mg | Yes | Yes |
Latvian | lv | Yes | Yes |
Lithuanian | lt | Yes | Yes |
Estonian | et | Yes | Yes |
Somali | so | Yes | Yes |
Tigrinya | ti | No | No |
Breton | br | No | No |
Fijian | fj | Yes | No |
Maltese | mt | Yes | Yes |
Corsican | co | Yes | Yes |
Luxembourgish | lb | Yes | Yes |
Occitan | oc | Yes | Yes |
Welsh | cy | Yes | Yes |
Albanian | sq | Yes | Yes |
Macedonian | mk | Yes | Yes |
Icelandic | is | Yes | Yes |
Slovenian | sl | Yes | Yes |
Galician | gl | Yes | Yes |
Basque | eu | Yes | Yes |
Azerbaijani | az | Yes | Yes |
Uzbek | uz | Yes | Yes |
Kazakh | kk | Yes | Yes |
Mongolian | mn | Yes | Yes |
Tibetan | bo | No | No |
Khmer | km | Yes | No |
Lao | lo | Yes | Yes |
Telugu | te | Yes | Yes |
Marathi | mr | Yes | Yes |
Chichewa | ny | Yes | Yes |
Esperanto | eo | Yes | Yes |
Kurdish | ku | No | No |
Tajik | tg | Yes | Yes |
Xhosa | xh | Yes | No |
Yiddish | yi | Yes | Yes |
Zulu | zu | Yes | Yes |
Sundanese | su | Yes | Yes |
Tatar | tt | Yes | Yes |
Quechua | qu | No | No |
Uighur | ug | No | No |
Wolof | wo | No | No |
Tswana | tn | Yes | Yes |
llmtranslate is licensed under the MIT License. See the LICENSE file for more details.
FAQs
A Python library for language detection and translation using OpenAI's GPT-4o.
We found that llmtranslate demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Opengrep forks Semgrep to preserve open source SAST in response to controversial licensing changes.
Security News
Critics call the Node.js EOL CVE a misuse of the system, sparking debate over CVE standards and the growing noise in vulnerability databases.
Security News
cURL and Go security teams are publicly rejecting CVSS as flawed for assessing vulnerabilities and are calling for more accurate, context-aware approaches.