
Security News
Official Go SDK for MCP in Development, Stable Release Expected in August
The official Go SDK for the Model Context Protocol is in development, with a stable, production-ready release expected by August 2025.
JAX
pip install lovely-numpy
or
conda install -c conda-forge lovely-numpy
How often do you find yourself debugging NumPy code? You dump your variable to the cell output, and see this:
numbers
array([[[-0.3541, -0.1975, -0.6715],
[-0.3369, -0.1975, -0.9853],
...,
[-0.4739, -0.3725, -0.689 ],
[ 2.2489, 2.4111, 2.396 ]],
[[-0.4054, -0.25 , -0.7238],
[-0.4226, -0.2325, -1.0724],
...,
[-0.8507, -0.6702, -1.0201],
[ 2.1633, 2.3585, 2.3263]],
...,
[[-0.8507, -0.3901, -1.1944],
[-0.7822, -0.2325, -1.4559],
...,
[-1.5014, -1.2304, -1.4733],
[ 2.1804, 2.4111, 2.4308]],
[[-0.8335, -0.4076, -1.2293],
[-0.8164, -0.285 , -1.5256],
...,
[-1.5528, -1.2829, -1.5256],
[ 2.1119, 2.341 , 2.3611]]], dtype=float32)
Was it really useful for you, as a human, to see all these numbers?
What is the shape? The size?
What are the statistics?
Are any of the values nan
or inf
?
Is it an image of a man holding a tench?
from lovely_numpy import lo
Lo
and behold!lo(numbers)
array[196, 196, 3] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073
Better, eh?
lo(numbers[1,:6,1]) # Still shows values if there are not too many.
array[6] f32 x∈[-0.408, -0.232] μ=-0.340 σ=0.075 [-0.250, -0.232, -0.338, -0.408, -0.408, -0.408]
spicy = numbers[0,:12,0].copy()
spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')
spicy = spicy.reshape((2,6))
lo(spicy) # Spicy stuff
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
lo(np.zeros((10, 10))) # A zero array - make it obvious
array[10, 10] n=100 all_zeros
lo(spicy, verbose=True)
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
array([[-3540.5432, -0. , ..., nan, -0.4054],
[ -0.4226, -0.4911, ..., -0.5424, -0.5082]],
dtype=float32)
.deeper
lo(numbers.transpose(2,1,0)).deeper
array[3, 196, 196] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073
array[196, 196] f32 n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
array[196, 196] f32 n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
array[196, 196] f32 n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
lo(numbers[:3,:4]).deeper(2)
array[3, 4, 3] f32 n=36 x∈[-1.125, -0.197] μ=-0.563 σ=0.280
array[4, 3] f32 n=12 x∈[-0.985, -0.197] μ=-0.487 σ=0.259
array[3] f32 x∈[-0.672, -0.197] μ=-0.408 σ=0.197 [-0.354, -0.197, -0.672]
array[3] f32 x∈[-0.985, -0.197] μ=-0.507 σ=0.343 [-0.337, -0.197, -0.985]
array[3] f32 x∈[-0.881, -0.303] μ=-0.530 σ=0.252 [-0.405, -0.303, -0.881]
array[3] f32 x∈[-0.776, -0.303] μ=-0.506 σ=0.199 [-0.440, -0.303, -0.776]
array[4, 3] f32 n=12 x∈[-1.072, -0.232] μ=-0.571 σ=0.281
array[3] f32 x∈[-0.724, -0.250] μ=-0.460 σ=0.197 [-0.405, -0.250, -0.724]
array[3] f32 x∈[-1.072, -0.232] μ=-0.576 σ=0.360 [-0.423, -0.232, -1.072]
array[3] f32 x∈[-0.968, -0.338] μ=-0.599 σ=0.268 [-0.491, -0.338, -0.968]
array[3] f32 x∈[-0.968, -0.408] μ=-0.651 σ=0.235 [-0.577, -0.408, -0.968]
array[4, 3] f32 n=12 x∈[-1.125, -0.285] μ=-0.631 σ=0.280
array[3] f32 x∈[-0.828, -0.303] μ=-0.535 σ=0.219 [-0.474, -0.303, -0.828]
array[3] f32 x∈[-1.125, -0.285] μ=-0.628 σ=0.360 [-0.474, -0.285, -1.125]
array[3] f32 x∈[-1.020, -0.390] μ=-0.651 σ=0.268 [-0.542, -0.390, -1.020]
array[3] f32 x∈[-1.003, -0.478] μ=-0.708 σ=0.219 [-0.645, -0.478, -1.003]
.rgb
colorThe important queston - is it our man?
lo(numbers).rgb
Maaaaybe? Looks like someone normalized him.
in_stats = ( (0.485, 0.456, 0.406), # mean
(0.229, 0.224, 0.225) ) # std
# numbers.rgb(in_stats, cl=True) # For channel-last input format
lo(numbers).rgb(denorm=in_stats)
It’s indeed our hero, the Tenchman!
.chans
# .chans will map values betwen [-1,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = np.array(in_stats[0])
std = np.array(in_stats[1])
numbers_01 = (numbers*std + mean).clip(0,1)
lo(numbers_01)
array[196, 196, 3] n=115248 (0.9Mb) x∈[0., 1.000] μ=0.361 σ=0.248
lo(numbers_01).chans
# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (np.stack([numbers]*8) + np.linspace(-2, 2, 8)[:,None,None,None])
eight_images = (eight_images
*np.array(in_stats[1])
+np.array(in_stats[0])
).clip(0,1).reshape(2,2,2,196,196,3)
lo(eight_images)
array[2, 2, 2, 196, 196, 3] n=921984 (7.0Mb) x∈[0., 1.000] μ=0.382 σ=0.319
lo(eight_images).rgb
lo(numbers+3).plt
lo(numbers+3).plt(center="mean", max_s=1000)
lo(numbers+3).plt(center="range")
from lovely_numpy import set_config, config, lovely
set_config(precision=5, sci_mode=True, color=False)
lo(np.array([1.,2,np.nan]))
array[3] μ=1.50000e+00 σ=5.00000e-01 NaN! [1.00000e+00, 2.00000e+00, nan]
set_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults
lo(np.array([1.,2,np.nan]))
array[3] μ=1.500 σ=0.500 NaN! [1.000, 2.000, nan]
# Or with config context manager.
with config(sci_mode=True):
print(lo(np.array([1,2,3])))
print(lo(np.array([1,2,3])))
array[3] i64 x∈[1, 3] μ=2.000e+00 σ=8.165e-01 [1, 2, 3]
array[3] i64 x∈[1, 3] μ=2.000 σ=0.816 [1, 2, 3]
Lo
from lovely_numpy import rgb, chans, plot
lovely(numbers) # Returns `str`, that's why you see ''.
# Note: lo(x) returns a wrapper object with a `__repr__` and other methods.
'array[196, 196, 3] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073'
rgb(numbers, denorm=in_stats)
chans(numbers*0.3+0.5)
plot(numbers)
lo(numbers).rgb(in_stats).fig # matplotlib figure
lo(numbers).plt.fig.savefig('pretty.svg') # Save it
!file pretty.svg; rm pretty.svg
pretty.svg: SVG Scalable Vector Graphics image
fig = plt.figure(figsize=(8,3))
fig.set_constrained_layout(True)
gs = fig.add_gridspec(2,2)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[1,1:])
ax2.set_axis_off()
ax3.set_axis_off()
lo(numbers_01).plt(ax=ax1)
lo(numbers_01).rgb(ax=ax2)
lo(numbers_01).chans(ax=ax3);
FAQs
💟 Lovely numpy
We found that lovely-numpy demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The official Go SDK for the Model Context Protocol is in development, with a stable, production-ready release expected by August 2025.
Security News
New research reveals that LLMs often fake understanding, passing benchmarks but failing to apply concepts or stay internally consistent.
Security News
Django has updated its security policies to reject AI-generated vulnerability reports that include fabricated or unverifiable content.