.. image:: https://github.com/earthobservations/luftdatenpumpe/workflows/Tests/badge.svg
:target: https://github.com/earthobservations/luftdatenpumpe/actions?workflow=Tests
:alt: CI outcome
.. image:: https://codecov.io/gh/earthobservations/luftdatenpumpe/branch/main/graph/badge.svg
:target: https://codecov.io/gh/earthobservations/luftdatenpumpe
:alt: Test suite code coverage
.. image:: https://pepy.tech/badge/luftdatenpumpe/month
:target: https://pypi.org/project/luftdatenpumpe/
:alt: PyPI downloads per month
.. image:: https://img.shields.io/pypi/v/luftdatenpumpe.svg
:target: https://pypi.org/project/luftdatenpumpe/
:alt: Package version on PyPI
.. image:: https://img.shields.io/pypi/status/luftdatenpumpe.svg
:target: https://pypi.org/project/luftdatenpumpe/
:alt: Project status (alpha, beta, stable)
.. image:: https://img.shields.io/pypi/pyversions/luftdatenpumpe.svg
:target: https://pypi.org/project/luftdatenpumpe/
:alt: Supported Python versions
.. image:: https://img.shields.io/pypi/l/luftdatenpumpe.svg
:target: https://github.com/earthobservations/luftdatenpumpe/blob/main/LICENSE
:alt: Project license
|
##############
Luftdatenpumpe
##############
.. image:: https://assets.okfn.org/images/ok_buttons/od_80x15_red_green.png
:target: https://okfn.org/opendata/
.. image:: https://assets.okfn.org/images/ok_buttons/oc_80x15_blue.png
:target: https://okfn.org/opendata/
.. image:: https://assets.okfn.org/images/ok_buttons/os_80x15_orange_grey.png
:target: https://okfn.org/opendata/
About
Process live and historical data from luftdaten.info
, irceline and OpenAQ_.
Filter by station-id, sensor-id and sensor-type, apply reverse geocoding,
store into TSDB_ and RDBMS_ databases (InfluxDB_ and PostGIS_),
publish to MQTT_ or just output as JSON.
.. figure:: https://cdn.jsdelivr.net/gh/earthobservations/luftdatenpumpe@main/doc/logo.svg
:target: https://github.com/earthobservations/luftdatenpumpe
:height: 200px
:width: 200px
Features
-
Luftdatenpumpe_ acquires the measurement readings either from the livedata API
of luftdaten.info
_ or from its archived CSV files published to archive.luftdaten.info
.
To minimize impact on the upstream servers, all data gets reasonably cached.
-
While iterating the readings, it optionally filters on station-id, sensor-id or sensor-type
and restrains information processing to the corresponding stations and sensors.
-
Then, each station's location information gets enhanced by
- attaching its geospatial position as a Geohash_.
- attaching a synthetic real-world address resolved using the reverse geocoding service Nominatim_ by OpenStreetMap_.
-
Information about stations can be
- displayed on STDOUT or STDERR in JSON format.
- filtered and transformed interactively through jq_, the swiss army knife of JSON manipulation.
- stored into RDBMS_ databases like PostgreSQL_ using the fine dataset_ package.
Being built on top of SQLAlchemy_, this supports all major databases.
- queried using advanced geospatial features when running PostGIS_, please
follow up reading the
Luftdatenpumpe PostGIS tutorial <doc-postgis_>
_.
-
Measurement readings can be
- displayed on STDOUT or STDERR in JSON format, which allows for piping into jq_ again.
- forwarded to MQTT_.
- stored to InfluxDB_ and then
- displayed in Grafana_.
Synopsis
::
# List networks
luftdatenpumpe networks
# List LDI stations
luftdatenpumpe stations --network=ldi --station=49,1033 --reverse-geocode
# Store list of LDI stations and metadata into RDBMS database (PostgreSQL), also display on STDERR
luftdatenpumpe stations --network=ldi --station=49,1033 --reverse-geocode --target=postgresql://luftdatenpumpe@localhost/weatherbase
# Store LDI readings into InfluxDB
luftdatenpumpe readings --network=ldi --station=49,1033 --target=influxdb://luftdatenpumpe@localhost/luftdaten_info
# Forward LDI readings to MQTT
luftdatenpumpe readings --network=ldi --station=49,1033 --target=mqtt://mqtt.example.org/luftdaten.info
For a full overview about all program options including meaningful examples,
you might just want to run luftdatenpumpe --help
on your command line
or visit luftdatenpumpe --help
_.
Screenshots
Luftdaten-Viewer displays stations and measurements from luftdaten.info (LDI) in Grafana.
Map display and filtering
- Filter by different synthesized address components and sensor type.
- Display measurements from filtered stations on Grafana Worldmap Panel.
- Display filtered list of stations with corresponding information in tabular form.
- Measurement values are held against configured thresholds so points are colored appropriately.
.. image:: https://community.hiveeyes.org/uploads/default/original/2X/f/f455d3afcd20bfa316fefbe69e43ca2fe159e62d.png
:target: https://weather.hiveeyes.org/grafana/d/9d9rnePmk/amo-ldi-stations-5-map-by-sensor-type
- Humanized label computed from synthesized OpenStreetMap address.
- Numeric station identifier.
- Measurement value, unit and field name.
.. image:: https://community.hiveeyes.org/uploads/default/original/2X/4/48eeda1a1d418eaf698b241a65080666abcf2497.png
:target: https://weather.hiveeyes.org/grafana/d/9d9rnePmk/amo-ldi-stations-5-map-by-sensor-type
Installation
If you are running Python 3 already, installing the program should be as easy as::
pip install luftdatenpumpe
At this point, you should be able to conduct simple tests like
luftdatenpumpe stations
as seen in the synopsis section above.
At least, you should verify the installation succeeded by running::
luftdatenpumpe --version
However, you might have to resolve some prerequisites so you want to follow
the detailed installation instructions at install Luftdatenpumpe
_.
Luftdaten-Viewer
About
Using Luftdatenpumpe, you can build user-friendly interactive GIS systems
on top of PostGIS, InfluxDB and Grafana. We are calling this "Luftdaten-Viewer".
Without further ado, you might enjoy reading about existing "Luftdaten-Viewer"
installations at Testimonials for Luftdatenpumpe
_.
Instructions
These installation instructions outline how to setup the whole system to build
similar interactive data visualization compositions of map-, graph- and other
panel-widgets like outlined in the "Testimonials" section.
Luftdaten-Viewer Applications
_Luftdaten-Viewer Databases
_Luftdaten-Viewer Grafana
_
License
This project is licensed under the terms of the GNU AGPL license.
Content attributions
The copyright of particular images and pictograms are held by their respective owners, unless otherwise noted.
Icons and pictograms
Water Pump Free Icon <https://www.onlinewebfonts.com/icon/97990>
_ from
Icon Fonts <http://www.onlinewebfonts.com/icon>
_ is licensed by CC BY 3.0.
.. _doc-virtualenv: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/virtualenv.rst
.. _doc-postgis: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/postgis.rst
.. _luftdaten.info: https://luftdaten.info/
.. _irceline: http://www.irceline.be/en/documentation/open-data
.. _OpenAQ: https://openaq.org/
.. _Luftdatenpumpe: https://github.com/earthobservations/luftdatenpumpe
.. _Testimonials for Luftdatenpumpe: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/testimonials.rst
.. _luftdatenpumpe --help: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/usage.rst
.. _install Luftdatenpumpe: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/setup/luftdatenpumpe.rst
.. _Luftdaten-Viewer Applications: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/setup/ldview-applications.rst
.. _Luftdaten-Viewer Databases: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/setup/ldview-databases.rst
.. _Luftdaten-Viewer Grafana: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/setup/ldview-grafana.rst
.. _Luftdaten-Viewer Cron Job: https://github.com/earthobservations/luftdatenpumpe/blob/main/doc/setup/ldview-cronjob.rst
.. _Erneuerung der Luftdatenpumpe: https://community.hiveeyes.org/t/erneuerung-der-luftdatenpumpe/1199
.. _The Hiveeyes Project: https://hiveeyes.org/
.. _OpenStreetMap: https://en.wikipedia.org/wiki/OpenStreetMap
.. _Nominatim: https://wiki.openstreetmap.org/wiki/Nominatim
.. _Geohash: https://en.wikipedia.org/wiki/Geohash
.. _dataset: https://dataset.readthedocs.io/
.. _SQLAlchemy: https://www.sqlalchemy.org/
.. _TSDB: https://en.wikipedia.org/wiki/Time_series_database
.. _RDBMS: https://en.wikipedia.org/wiki/Relational_database_management_system
.. _MQTT: http://mqtt.org/
.. _PostgreSQL: https://www.postgresql.org/
.. _PostGIS: https://postgis.net/
.. _InfluxDB: https://github.com/influxdata/influxdb
.. _Grafana: https://github.com/grafana/grafana
.. _jq: https://stedolan.github.io/jq/