Socket
Book a DemoInstallSign in
Socket

matrice-analytics

Package Overview
Dependencies
Maintainers
1
Versions
82
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

matrice-analytics

Common server utilities for Matrice.ai services

pipPyPI
Version
0.1.109
Maintainers
1

Post-Processing Module - Refactored Architecture

Overview

This module provides a comprehensive, refactored post-processing system for the Matrice Python SDK. The system has been completely redesigned to be more pythonic, maintainable, and extensible while providing powerful analytics capabilities for various use cases.

🚀 Key Features

Unified Architecture

  • Single Entry Point: PostProcessor class handles all processing needs
  • Standardized Results: All operations return ProcessingResult objects
  • Consistent Configuration: Type-safe configuration system with validation
  • Registry Pattern: Easy registration and discovery of use cases

Separate Use Case Classes

  • People Counting: Advanced people counting with zone analysis and tracking
  • Customer Service: Comprehensive customer service analytics with business intelligence
  • Extensible Design: Easy to add new use cases

Pythonic Configuration Management

  • Dataclass-based: Type-safe configurations using dataclasses
  • Nested Configurations: Support for complex nested config structures
  • File Support: JSON/YAML configuration file loading and saving
  • Validation: Built-in validation with detailed error messages

Comprehensive Error Handling

  • Standardized Errors: All errors return structured ProcessingResult objects
  • Detailed Information: Error messages include type, context, and debugging info
  • Graceful Degradation: System continues operating even with partial failures

Processing Statistics

  • Performance Tracking: Automatic processing time measurement
  • Success Metrics: Success/failure rates and statistics
  • Insights Generation: Automatic generation of actionable insights

📁 Architecture

post_processing/
├── __init__.py              # Main exports and convenience functions
├── processor.py             # Main PostProcessor class
├── README.md               # This documentation
│
├── core/                   # Core system components
│   ├── __init__.py
│   ├── base.py            # Base classes, enums, and protocols
│   ├── config.py          # Configuration system
│   └── advanced_usecases.py # Advanced use case implementations
│
├── usecases/              # Separate use case implementations
│   ├── __init__.py
│   ├── people_counting.py # People counting use case
│   └── customer_service.py # Customer service use case
│
└── utils/                 # Utility functions organized by category
    ├── __init__.py
    ├── geometry_utils.py  # Geometric calculations
    ├── format_utils.py    # Format detection and conversion
    ├── filter_utils.py    # Filtering and cleaning operations
    ├── counting_utils.py  # Counting and aggregation
    └── tracking_utils.py  # Tracking and movement analysis

🛠 Quick Start

Basic Usage

from matrice_analytics.post_processing import PostProcessor, process_simple

# Method 1: Simple processing (recommended for quick tasks)
result = process_simple(
    raw_results,
    usecase="people_counting",
    confidence_threshold=0.5
)

# Method 2: Using PostProcessor class (recommended for complex workflows)
processor = PostProcessor()
result = processor.process_simple(
    raw_results,
    usecase="people_counting", 
    confidence_threshold=0.5,
    enable_tracking=True
)

print(f"Status: {result.status.value}")
print(f"Summary: {result.summary}")
print(f"Insights: {len(result.insights)} generated")

Advanced Configuration

# Create complex configuration
config = processor.create_config(
    'people_counting',
    confidence_threshold=0.6,
    enable_tracking=True,
    person_categories=['person', 'people', 'human'],
    zone_config={
        'zones': {
            'entrance': [[0, 0], [100, 0], [100, 100], [0, 100]],
            'checkout': [[200, 200], [300, 200], [300, 300], [200, 300]]
        }
    },
    alert_config={
        'count_thresholds': {'all': 10},
        'occupancy_thresholds': {'entrance': 5}
    }
)

# Process with configuration
result = processor.process(raw_results, config)

Configuration File Support

# Save configuration to file
processor.save_config(config, "people_counting_config.json")

# Load and use configuration from file
result = processor.process_from_file(raw_results, "people_counting_config.json")

📊 Use Cases

1. People Counting (people_counting)

Advanced people counting with comprehensive analytics:

result = process_simple(
    raw_results,
    usecase="people_counting",
    confidence_threshold=0.5,
    enable_tracking=True,
    person_categories=['person', 'people'],
    zone_config={
        'zones': {
            'entrance': [[0, 0], [100, 0], [100, 100], [0, 100]]
        }
    }
)

Features:

  • Multi-category person detection
  • Zone-based counting and analysis
  • Unique person tracking
  • Occupancy analysis
  • Alert generation based on thresholds
  • Temporal analysis and trends

2. Customer Service (customer_service)

Comprehensive customer service analytics:

result = process_simple(
    raw_results,
    usecase="customer_service",
    confidence_threshold=0.6,
    service_proximity_threshold=50.0,
    staff_categories=['staff', 'employee'],
    customer_categories=['customer', 'person']
)

Features:

  • Staff utilization analysis
  • Customer-staff interaction detection
  • Service quality metrics
  • Area occupancy analysis
  • Queue management insights
  • Business intelligence metrics

🔧 Configuration System

Configuration Classes

All configurations are type-safe dataclasses with built-in validation:

from matrice_analytics.post_processing import PeopleCountingConfig, ZoneConfig

# Create configuration programmatically
config = PeopleCountingConfig(
    confidence_threshold=0.5,
    enable_tracking=True,
    zone_config=ZoneConfig(
        zones={
            'entrance': [[0, 0], [100, 0], [100, 100], [0, 100]]
        }
    )
)

# Validate configuration
errors = config.validate()
if errors:
    print(f"Configuration errors: {errors}")

Configuration Templates

# Get configuration template for a use case
template = processor.get_config_template('people_counting')
print(f"Available options: {list(template.keys())}")

# List all available use cases
use_cases = processor.list_available_usecases()
print(f"Available use cases: {use_cases}")

📈 Processing Results

All processing operations return a standardized ProcessingResult object:

class ProcessingResult:
    data: Any                           # Processed data
    status: ProcessingStatus           # SUCCESS, ERROR, WARNING, PARTIAL
    usecase: str                       # Use case name
    category: str                      # Use case category
    processing_time: float             # Processing time in seconds
    summary: str                       # Human-readable summary
    insights: List[str]                # Generated insights
    warnings: List[str]                # Warning messages
    error_message: Optional[str]       # Error message if failed
    predictions: List[Dict[str, Any]]  # Detailed predictions
    metrics: Dict[str, Any]            # Performance metrics

Working with Results

result = processor.process_simple(data, "people_counting")

# Check status
if result.is_success():
    print(f"✅ {result.summary}")
    
    # Access insights
    for insight in result.insights:
        print(f"💡 {insight}")
    
    # Access metrics
    print(f"📊 Metrics: {result.metrics}")
    
    # Access processed data
    processed_data = result.data
else:
    print(f"❌ Processing failed: {result.error_message}")

📊 Statistics and Monitoring

# Get processing statistics
stats = processor.get_statistics()
print(f"Total processed: {stats['total_processed']}")
print(f"Success rate: {stats['success_rate']:.2%}")
print(f"Average processing time: {stats['average_processing_time']:.3f}s")

# Reset statistics
processor.reset_statistics()

🔌 Extensibility

Adding New Use Cases

  • Create Use Case Class:
from matrice_analytics.post_processing.core.base import BaseProcessor

class MyCustomUseCase(BaseProcessor):
    def __init__(self):
        super().__init__("my_custom_usecase")
        self.category = "custom"
    
    def process(self, data, config, context=None):
        # Implement your processing logic
        return self.create_result(processed_data, "my_custom_usecase", "custom")
  • Register Use Case:
from matrice_analytics.post_processing.core.base import registry

registry.register_use_case("custom", "my_custom_usecase", MyCustomUseCase)

Adding New Utility Functions

Add utility functions to the appropriate module in the utils/ directory and export them in utils/__init__.py.

🧪 Testing

The system includes comprehensive error handling and validation. Here's how to test your implementations:

# Test configuration validation
errors = processor.validate_config({
    'usecase': 'people_counting',
    'confidence_threshold': 0.5
})

# Test with sample data
sample_data = [
    {'category': 'person', 'confidence': 0.8, 'bbox': [10, 10, 50, 50]}
]

result = process_simple(sample_data, 'people_counting')
assert result.is_success()

🔄 Migration from Old System

If you're migrating from the old post-processing system:

  • Update Imports:

    # Old
    from matrice_analytics.old_post_processing import some_function
    
    # New
    from matrice_analytics.post_processing import PostProcessor, process_simple
    
  • Update Processing Calls:

    # Old
    result = old_process_function(data, config_dict)
    
    # New
    result = process_simple(data, "usecase_name", **config_dict)
    
  • Update Configuration:

    # Old
    config = {"threshold": 0.5, "enable_tracking": True}
    
    # New
    config = processor.create_config("people_counting", 
                                    confidence_threshold=0.5, 
                                    enable_tracking=True)
    

🐛 Troubleshooting

Common Issues

  • Use Case Not Found:

    # Check available use cases
    print(processor.list_available_usecases())
    
  • Configuration Validation Errors:

    # Validate configuration
    errors = processor.validate_config(config)
    if errors:
        print(f"Validation errors: {errors}")
    
  • Processing Failures:

    # Check result status and error details
    if not result.is_success():
        print(f"Error: {result.error_message}")
        print(f"Error type: {result.error_type}")
        print(f"Error details: {result.error_details}")
    

📝 API Reference

Main Classes

  • PostProcessor: Main processing class
  • ProcessingResult: Standardized result container
  • BaseConfig: Base configuration class
  • PeopleCountingConfig: People counting configuration
  • CustomerServiceConfig: Customer service configuration

Convenience Functions

  • process_simple(): Simple processing function
  • create_config_template(): Get configuration template
  • list_available_usecases(): List available use cases
  • validate_config(): Validate configuration

Utility Functions

The system provides comprehensive utility functions organized by category:

  • Geometry: Point-in-polygon, distance calculations, IoU
  • Format: Format detection and conversion
  • Filter: Confidence filtering, deduplication
  • Counting: Object counting, zone analysis
  • Tracking: Movement analysis, line crossing detection

🎯 Best Practices

  • Use Simple Processing for Quick Tasks:

    result = process_simple(data, "people_counting", confidence_threshold=0.5)
    
  • Use PostProcessor Class for Complex Workflows:

    processor = PostProcessor()
    config = processor.create_config("people_counting", **params)
    result = processor.process(data, config)
    
  • Always Check Result Status:

    if result.is_success():
        # Process successful result
    else:
        # Handle error
    
  • Use Configuration Files for Complex Setups:

    processor.save_config(config, "config.json")
    result = processor.process_from_file(data, "config.json")
    
  • Monitor Processing Statistics:

    stats = processor.get_statistics()
    # Monitor success rates and performance
    

🔮 Future Enhancements

The refactored system is designed for easy extension. Planned enhancements include:

  • Additional use cases (security monitoring, retail analytics)
  • Advanced tracking algorithms
  • Real-time processing capabilities
  • Integration with external analytics platforms
  • Machine learning-based insights generation

The refactored post-processing system provides a solid foundation for scalable, maintainable, and powerful analytics capabilities. The clean architecture makes it easy to extend and customize for specific use cases while maintaining consistency and reliability.

Keywords

matrice

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts