Socket
Book a DemoInstallSign in
Socket

mcp-common

Package Overview
Dependencies
Maintainers
1
Versions
16
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

mcp-common

Oneiric-Native foundation library providing battle-tested patterns for MCP (Model Context Protocol) servers, with YAML configuration, Rich UI, and CLI lifecycle management

pipPyPI
Version
0.4.8
Maintainers
1

mcp-common

Coverage Version: 0.3.6 (Oneiric-Native) Status: Production Ready

Overview

mcp-common is an Oneiric-native foundation library for building production-grade MCP (Model Context Protocol) servers. It provides battle-tested patterns extracted from 9 production servers including crackerjack, session-mgmt-mcp, and fastblocks.

🎯 What This Library Provides:

  • Oneiric CLI Factory (v0.3.3+) - Standardized server lifecycle with start/stop/restart/status/health commands
  • HTTP Client Adapter - Connection pooling with httpx for 11x performance
  • Security Utilities - API key validation and input sanitization
  • Rich Console UI - Beautiful panels and notifications for server operations
  • Settings Management - YAML + environment variable configuration (Pydantic-based)
  • Health Check System - Production-ready health monitoring
  • Type-Safe - Full Pydantic validation and type hints

Design Principles:

  • Oneiric-Native - Direct Pydantic, Rich library, and standard patterns
  • Production-Ready - Extracted from real production systems
  • Layered Configuration - YAML files + environment variables with clear priority
  • Rich UI - Professional console output with Rich panels
  • Type-safe - Full type hints with strict MyPy checking
  • Well-Tested - 90% coverage minimum

📚 Examples

See examples/ for complete production-ready examples:

1. CLI Server (Oneiric-Native) - NEW in v0.3.3

Demonstrates the CLI factory for standardized server lifecycle management:

  • 5 lifecycle commands (start, stop, restart, status, health)
  • PID file management with security validation
  • Runtime health snapshots
  • Graceful shutdown with signal handling
  • Custom lifecycle handlers
cd examples
python cli_server.py start
python cli_server.py status
python cli_server.py health
python cli_server.py stop

2. Weather MCP Server (Oneiric-Native)

Demonstrates HTTP adapters and FastMCP integration:

  • HTTPClientAdapter with connection pooling (11x performance)
  • MCPBaseSettings with YAML + environment configuration
  • ServerPanels for beautiful terminal UI
  • Oneiric configuration patterns (direct instantiation)
  • FastMCP tool integration (optional; install separately)
cd examples
python weather_server.py

Full documentation: examples/README.md

Quick Start

Installation

pip install mcp-common>=0.3.6

This automatically installs Pydantic, Rich, and all required dependencies.

If you plan to run an MCP server (e.g., the examples), install a protocol host such as FastMCP separately:

pip install fastmcp
# or
uv add fastmcp

Minimal Example

# my_server/settings.py
from mcp_common.config import MCPBaseSettings
from pydantic import Field


class MyServerSettings(MCPBaseSettings):
    """Server configuration following Oneiric pattern.

    Loads from (priority order):
    1. settings/local.yaml (gitignored)
    2. settings/my-server.yaml
    3. Environment variables MY_SERVER_*
    4. Defaults below
    """

    api_key: str = Field(description="API key for service")
    timeout: int = Field(default=30, description="Request timeout")


# my_server/main.py
from fastmcp import FastMCP  # Optional: install fastmcp separately
from mcp_common import ServerPanels, HTTPClientAdapter, HTTPClientSettings
from my_server.settings import MyServerSettings

# Initialize
mcp = FastMCP("MyServer")
settings = MyServerSettings.load("my-server")

# Initialize HTTP adapter
http_settings = HTTPClientSettings(timeout=settings.timeout)
http_adapter = HTTPClientAdapter(settings=http_settings)


# Define tools
@mcp.tool()
async def call_api():
    # Use the global adapter instance
    response = await http_adapter.get("https://api.example.com")
    return response.json()


# Run server
if __name__ == "__main__":
    # Display startup panel
    ServerPanels.startup_success(
        server_name="My MCP Server",
        version="1.0.0",
        features=["HTTP Client", "YAML Configuration"],
    )

    mcp.run()

Core Features

🔌 HTTP Client Adapter

Connection Pooling with httpx:

  • 11x faster than creating clients per request
  • Automatic initialization and cleanup
  • Configurable timeouts, retries, connection limits
from mcp_common import HTTPClientAdapter, HTTPClientSettings

# Configure HTTP adapter
http_settings = HTTPClientSettings(
    timeout=30,
    max_connections=50,
    retry_attempts=3,
)

# Create adapter
http_adapter = HTTPClientAdapter(settings=http_settings)

# Make requests
response = await http_adapter.get("https://api.example.com")

Note: Rate limiting is not provided by this library. If you use FastMCP, its built-in RateLimitingMiddleware can be enabled; otherwise, use project-specific configuration.

🎯 Oneiric CLI Factory (NEW in v0.3.3)

Production-Ready Server Lifecycle Management:

The MCPServerCLIFactory provides standardized CLI commands for managing MCP server lifecycles, inspired by Oneiric's operational patterns. It handles process management, health monitoring, and graceful shutdown out of the box.

Features:

  • 5 Standard Commands - start, stop, restart, status, health
  • Security-First - Secure PID files (0o600), cache directories (0o700), ownership validation
  • Process Validation - Detects stale PIDs, prevents race conditions, validates process identity
  • Health Monitoring - Runtime health snapshots with configurable TTL
  • Signal Handling - Graceful shutdown on SIGTERM/SIGINT
  • Custom Handlers - Extensible lifecycle hooks for server-specific logic
  • Dual Output - Human-readable and JSON output modes
  • Standard Exit Codes - Shell-scriptable with semantic exit codes

Quick Example:

from mcp_common.cli import MCPServerCLIFactory, MCPServerSettings

# 1. Load settings (YAML + env vars)
settings = MCPServerSettings.load("my-server")


# 2. Define lifecycle handlers
def start_server():
    print("Server initialized!")
    # Your server startup logic here


def stop_server(pid: int):
    print(f"Stopping PID {pid}")
    # Your cleanup logic here


def check_health():
    # Return current health snapshot
    return RuntimeHealthSnapshot(
        orchestrator_pid=os.getpid(),
        watchers_running=True,
    )


# 3. Create CLI factory
factory = MCPServerCLIFactory(
    server_name="my-server",
    settings=settings,
    start_handler=start_server,
    stop_handler=stop_server,
    health_probe_handler=check_health,
)

# 4. Create and run Typer app
app = factory.create_app()

if __name__ == "__main__":
    app()

Command Usage:

# Start server (creates PID file and health snapshot)
python my_server.py start

# Check status (lightweight process check)
python my_server.py status
# Output: Server running (PID 12345, snapshot age: 2.3s, fresh: True)

# View health (detailed health information)
python my_server.py health

# Live health probe
python my_server.py health --probe

# Stop server (graceful shutdown with SIGTERM)
python my_server.py stop

# Force stop with timeout
python my_server.py stop --timeout 5 --force

# Restart (stop + start)
python my_server.py restart

# JSON output for automation
python my_server.py status --json

Configuration:

Settings are loaded from multiple sources (priority order):

  • settings/local.yaml (gitignored, for development)
  • settings/{server-name}.yaml (checked into repo)
  • Environment variables MCP_SERVER_*
  • Defaults in MCPServerSettings

Example settings/my-server.yaml:

server_name: "My MCP Server"
cache_root: .oneiric_cache
health_ttl_seconds: 60.0
log_level: INFO

Exit Codes:

  • 0 - Success
  • 1 - General error
  • 2 - Server not running (status/stop)
  • 3 - Server already running (start)
  • 4 - Health check failed
  • 5 - Configuration error
  • 6 - Permission error
  • 7 - Timeout
  • 8 - Stale PID file (use --force)

Full Example:

See examples/cli_server.py for a complete working example with custom commands and health probes.

⚙️ Settings with YAML Support (Oneiric Pattern)

  • Pure Pydantic BaseModel
  • Layered configuration: YAML files + environment variables
  • Type validation with Pydantic
  • Path expansion (~ → home directory)
from mcp_common.config import MCPBaseSettings


class ServerSettings(MCPBaseSettings):
    api_key: str  # Required
    timeout: int = 30  # Optional with default


# Load with layered configuration
settings = ServerSettings.load("my-server")
# Loads from:
# 1. settings/my-server.yaml
# 2. settings/local.yaml
# 3. Environment variables MY_SERVER_*
# 4. Defaults

📝 Standard Python Logging

mcp-common uses standard Python logging. Configure as needed for your server:

import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)

logger = logging.getLogger(__name__)
logger.info("Server started")

🎨 Rich Console UI

  • Beautiful startup panels
  • Error displays with context
  • Statistics tables
  • Progress bars
from mcp_common.ui import ServerPanels

ServerPanels.startup_success(
    server_name="Mailgun MCP",
    http_endpoint="http://localhost:8000",
    features=["Rate Limiting", "Security Filters"],
)

🧪 Testing Utilities

  • Mock MCP clients
  • HTTP response mocking
  • Shared fixtures
  • DI-friendly testing
from mcp_common.testing import MockMCPClient, mock_http_response


async def test_tool():
    with mock_http_response(status=200, json={"ok": True}):
        result = await my_tool()
    assert result["success"]

Documentation

Complete Example

See examples/ for a complete production-ready Weather MCP server demonstrating mcp-common patterns.

Key Patterns Demonstrated:

  • Oneiric Settings - YAML + environment variable configuration with .load()
  • HTTP Adapter - HTTPClientAdapter with connection pooling
  • Rich UI - ServerPanels for startup/errors/status
  • Tool Organization - Modular tool registration with FastMCP
  • Configuration Layering - Multiple config sources with clear priority
  • Type Safety - Full Pydantic validation throughout
  • Error Handling - Graceful error display with ServerPanels

Performance Benchmarks

HTTP Client Adapter (vs new client per request)

Before: 100 requests in 45 seconds, 500MB memory
After:  100 requests in 4 seconds, 50MB memory

Result: 11x faster, 10x less memory

Rate Limiter Overhead

Without: 1000 requests in 1.2 seconds
With:    1000 requests in 1.25 seconds

Result: +4% overhead (negligible vs network I/O)

Usage Patterns

Pattern 1: Configure Settings with YAML

from mcp_common.config import MCPBaseSettings
from pydantic import Field


class MySettings(MCPBaseSettings):
    api_key: str = Field(description="API key")
    timeout: int = Field(default=30, description="Timeout")


# Load from settings/my-server.yaml + env vars
settings = MySettings.load("my-server")

# Access configuration
print(f"Using API key: {settings.get_masked_key()}")

Pattern 2: Use HTTP Client Adapter

from mcp_common import HTTPClientAdapter, HTTPClientSettings


# Configure HTTP client
http_settings = HTTPClientSettings(
    timeout=30,
    max_connections=50,
    retry_attempts=3,
)

# Create adapter
http = HTTPClientAdapter(settings=http_settings)


# Make requests
@mcp.tool()
async def call_api():
    response = await http.get("https://api.example.com/data")
    return response.json()


# Cleanup when done
await http._cleanup_resources()

Pattern 3: Display Rich UI Panels

from mcp_common import ServerPanels

# Startup panel
ServerPanels.startup_success(
    server_name="My Server",
    version="1.0.0",
    features=["Feature 1", "Feature 2"],
)

# Error panel
ServerPanels.error(
    title="API Error",
    message="Failed to connect",
    suggestion="Check your API key",
)

# Status table
ServerPanels.status_table(
    title="Health Check",
    rows=[
        ("API", "✅ Healthy", "200 OK"),
        ("Database", "⚠️ Degraded", "Slow queries"),
    ],
)

Development

Setup

git clone https://github.com/lesaker/mcp-common.git
cd mcp-common
pip install -e ".[dev]"

Running Tests

# Run all tests with coverage
pytest --cov=mcp_common --cov-report=html

# Run specific test
pytest tests/test_http_adapter.py -v

# Run with ACB integration tests
pytest tests/integration/ -v

Code Quality

# Format code
ruff format

# Lint code
ruff check

# Type checking
mypy mcp_common tests

# Run all quality checks
crackerjack --all

Versioning

Recent Versions:

  • 0.3.6 - Oneiric-native (removed ACB dependency)
  • 0.3.3 - Added Oneiric CLI Factory
  • 0.3.0 - Initial Oneiric patterns
  • 2.0.0 - Previous ACB-native version (deprecated)

Compatibility:

  • Requires Python 3.13+
  • Optional: compatible with FastMCP 2.0+
  • Uses Pydantic 2.12+, Rich 14.2+

Success Metrics

Current Status:

  • ✅ Professional Rich UI in all components
  • ✅ 90%+ test coverage maintained
  • ✅ Zero production incidents
  • ✅ Oneiric-native patterns throughout
  • ✅ Standardized CLI lifecycle management
  • ✅ Clean dependency tree (no framework lock-in)

License

BSD-3-Clause License - See LICENSE for details

Contributing

Contributions are welcome! Please:

  • Read examples/README.md for usage patterns
  • Follow Oneiric patterns (see examples)
  • Fork and create feature branch
  • Add tests (coverage ≥90%)
  • Ensure all quality checks pass (ruff format && ruff check && mypy && pytest)
  • Submit pull request

Acknowledgments

Built with patterns extracted from 9 production MCP servers:

Primary Pattern Sources:

  • crackerjack - MCP server structure, Rich UI panels, CLI patterns
  • session-mgmt-mcp - Configuration patterns, health checks
  • fastblocks - Adapter organization, settings management

Additional Contributors:

  • raindropio-mcp (HTTP client patterns)
  • excalidraw-mcp (testing patterns)
  • opera-cloud-mcp
  • mailgun-mcp
  • unifi-mcp

Support

For support, please check the documentation in the docs/ directory or create an issue in the repository.

Ready to get started? Check out examples/ for working examples demonstrating all features!

Keywords

configuration

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts