Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
A simple, yet elegant MDX library for TM1
pip install mdxpy
Create MDX queries programmatically with the Member
, MdxTuple
, MdxHierarchySet
, MdxBuilder
classes.
Benefits of using MDXpy over hacking raw MDX queries in your code
}
, ]
, )
in a query) forever]
in object names is taken care ofMember
is used in MdxTuple
and MdxHierarchySet
.
create a Member
with the static Member.of(*args: str)
method.
>>> member = Member.of("Product", "Product1")
>>> print(member.unique_name)
[PRODUCT].[PRODUCT].[PRODUCT1]
>>> member = Member.of("Region", "ByGeography", "UK")
>>> print(member.unique_name)
[REGION].[BYGEOGRAPHY].[UK]
Create a MdxTuple
with the static of(*args: Member)
method. The MDX expression of the tuple is generated with the to_mdx
method.
>>> mdx_tuple = MdxTuple.of(Member.of("Product", "Product1"), Member.of("Region", "US"))
>>> print(mdx_tuple.to_mdx())
([PRODUCT].[PRODUCT].[PRODUCT1],[REGION].[REGION].[US])
>>> mdx_tuple = MdxTuple.of(Member.of("Product", "ByType", "Product1"), Member.of("Region", "ByGeography", "North America"))
>>> print(mdx_tuple.to_mdx())
([PRODUCT].[BYTYPE].[PRODUCT1],[REGION].[BYGEOGRAPHY].[North America])
you can add a Member
to a MdxTuple
>>> mdx_tuple = MdxTuple.of(Member.of("Product", "ByType", "Product1"))
>>> mdx_tuple.add_member(Member.of("Region", "ByGeography", "North America"))
>>> print(mdx_tuple.to_mdx())
([PRODUCT].[BYTYPE].[PRODUCT1],[REGION].[BYGEOGRAPHY].[NORTHAMERICA])
MdxHierarchySet
is created with any of the static methods on the MdxHierarchySet
class. The MDX
expression of the set is generated with the to_mdx
method.
>>> mdx_set = MdxHierarchySet.tm1_subset_all("Product")
>>> print(mdx_set.to_mdx())
{TM1SUBSETALL([Product].[Product])}
>>> mdx_set = MdxHierarchySet.tm1_subset_to_set("Region", "By Geography", "Default")
>>> print(mdx_set.to_mdx())
{TM1SUBSETTOSET([REGION].[BYGEOGRAPHY],'Default')}
>>> mdx_set = MdxHierarchySet.all_leaves("Region")
>>> print(mdx_set.to_mdx())
{TM1FILTERBYLEVEL({TM1SUBSETALL([REGION].[REGION])},0)}
>>> mdx_set = MdxHierarchySet.members([Member.of("Region", "US"), Member.of("Product", "Product1")])
>>> print(mdx_set.to_mdx())
{[REGION].[REGION].[US],[PRODUCT].[PRODUCT].[PRODUCT1]}
Functions on MdxHierarchySet
can be concatenated to arbitrary length in a functional style:
>>> mdx_set = MdxHierarchySet.tm1_subset_all("Region").filter_by_level(0).filter_by_pattern("I*").tm1_sort()
>>> print(mdx_set.to_mdx())
{TM1SORT({TM1FILTERBYPATTERN({TM1FILTERBYLEVEL({TM1SUBSETALL([REGION].[REGION])},0)},'I*')},ASC)}
The MdxBuilder
is used to build MDX queries. MdxHierarchySet
or MdxTuple
are placed on the axes. Zero suppression can be switched on or off per axis. The actual MDX
expression is generated with the to_mdx
method.
>>> query = MdxBuilder.from_cube("Cube").add_hierarchy_set_to_column_axis(MdxHierarchySet.all_leaves("Product"))
>>> print(query.to_mdx())
SELECT {TM1FILTERBYLEVEL({TM1SUBSETALL([PRODUCT].[PRODUCT])},0)} ON 0
FROM [CUBE]
>>> query = MdxBuilder.from_cube("Cube").add_hierarchy_set_to_column_axis(MdxHierarchySet.member(Member.of("Product", "Product1")))
>>> print(query.to_mdx())
SELECT {[PRODUCT].[PRODUCT].[PRODUCT1]} ON 0
FROM [CUBE]
>>> query = MdxBuilder.from_cube("Cube").add_member_tuple_to_axis(0, Member.of("Product", "Product1"), Member.of("Region", "EMEA"))
>>> print(query.to_mdx())
SELECT
{([PRODUCT].[PRODUCT].[PRODUCT1],[REGION].[REGION].[EMEA])} ON 0
FROM [CUBE]
>>> query = MdxBuilder.from_cube("Cube").columns_non_empty().add_hierarchy_set_to_column_axis(MdxHierarchySet.member(Member.of("Product", "Product1")))
>>> print(query.to_mdx())
SELECT
NON EMPTY {[PRODUCT].[PRODUCT].[PRODUCT1]} ON 0
FROM [CUBE]
MDX queries can have any number of axes. Axis 0 (=columns) must be defined.
>>> mdx = MdxBuilder.from_cube("Cube") \
.add_hierarchy_set_to_axis(0, MdxHierarchySet.member(Member.of("Region", "US"))) \
.add_hierarchy_set_to_axis(1, MdxHierarchySet.all_leaves("Product")) \
.add_hierarchy_set_to_axis(2, MdxHierarchySet.member(Member.of("Version", "Actual"))) \
.add_hierarchy_set_to_axis(3, MdxHierarchySet.tm1_subset_to_set("Time", "Time", "2020-Q1")) \
.to_mdx()
>>> print(mdx)
SELECT
{[REGION].[REGION].[US]} ON 0,
{TM1FILTERBYLEVEL({TM1SUBSETALL([PRODUCT].[PRODUCT])},0)} ON 1,
{[VERSION].[VERSION].[ACTUAL]} ON 2,
{TM1SUBSETTOSET([TIME].[TIME],'2020-Q1')} ON 3
FROM [CUBE]
The CalculatedMember
class is used to define query-scoped calculated members. They are used with the MdxBuilder
through the with_member
function.
>>> mdx = MdxBuilder.from_cube(cube="Record Rating").with_member(
CalculatedMember.avg(
dimension="Period",
hierarchy="Period",
element="AVG 2016",
cube="Record Rating",
mdx_set=MdxHierarchySet.children(member=Member.of("Period", "2016")),
mdx_tuple=MdxTuple.of(Member.of("Chart", "Total Charts"), Member.of("Record Rating Measure", "Rating")))) \
.add_hierarchy_set_to_row_axis(
MdxHierarchySet
.children(Member.of("Record", "Total Records"))
.top_count(cube="Record Rating", mdx_tuple=MdxTuple.of(Member.of("Period", "AVG 2016")), top=5)) \
.add_member_tuple_to_columns(Member.of("Period", "AVG 2016")) \
.where(Member.of("Chart", "Total Charts"), Member.of("Record Rating Measure", "Rating")) \
.to_mdx()
>>> print(mdx)
WITH
MEMBER [PERIOD].[PERIOD].[AVG2016] AS AVG({[PERIOD].[PERIOD].[2016].CHILDREN},[Record Rating].([CHART].[CHART].[TOTALCHARTS],[RECORDRATINGMEASURE].[RECORDRATINGMEASURE].[RATING]))
SELECT
{([PERIOD].[PERIOD].[AVG2016])} ON 0,
{TOPCOUNT({[RECORD].[RECORD].[TOTALRECORDS].CHILDREN},5,[RECORDRATING].([PERIOD].[PERIOD].[AVG2016]))} ON 1
FROM [RECORDRATING]
WHERE ([CHART].[CHART].[TOTALCHARTS],[RECORDRATINGMEASURE].[RECORDRATINGMEASURE].[RATING])
The DimensionProperty
class is used to query attributes in conjunction with data.
It is used with the MdxBuilder
through the add_properties_to_row_axis
, add_hierarchy_set_to_column_axis
functions.
from mdxpy import DimensionProperty, MdxHierarchySet, MdxBuilder, Member
query = MdxBuilder.from_cube("Sales")
query = query.rows_non_empty()
query = query.add_hierarchy_set_to_row_axis(MdxHierarchySet.all_leaves("Product"))
query = query.add_properties_to_row_axis(DimensionProperty.of("Product", "Description"))
query = query.columns_non_empty()
query = query.add_hierarchy_set_to_column_axis(MdxHierarchySet.member(Member.of("Sales Measure", "Revenue")))
query = query.where(Member.of("Year", "2022"), Member.of("Region", "Switzerland"))
print(query.to_mdx())
>>> print(mdx)
SELECT
NON EMPTY {[salesmeasure].[salesmeasure].[revenue]} DIMENSION PROPERTIES MEMBER_NAME ON 0,
NON EMPTY {TM1FILTERBYLEVEL({TM1SUBSETALL([product].[product])},0)} DIMENSION PROPERTIES [product].[product].[description] ON 1
FROM [sales]
WHERE ([year].[year].[2022],[region].[region].[switzerland])
To see all samples checkout the test.py
file
All tests in test.py
Contribution is welcome. If you find a bug or feel like you can contribute please fork the repository, update the code and then create a pull request so we can merge in the changes.
FAQs
A simple, yet elegant MDX library for TM1
We found that mdxpy demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.