
Security News
NVD Concedes Inability to Keep Pace with Surging CVE Disclosures in 2025
Security experts warn that recent classification changes obscure the true scope of the NVD backlog as CVE volume hits all-time highs.
The Minigrid library contains a collection of discrete grid-world environments to conduct research on Reinforcement Learning. The environments follow the Gymnasium standard API and they are designed to be lightweight, fast, and easily customizable.
The documentation website is at minigrid.farama.org, and we have a public discord server (which we also use to coordinate development work) that you can join here: https://discord.gg/bnJ6kubTg6
Note that the library was previously known as gym-minigrid and it has been referenced in several publications. If your publication uses the Minigrid library and you wish for it to be included in the list of publications, please create an issue in the GitHub repository.
See the Project Roadmap for details regarding the long-term plans.
To install the Minigrid library use pip install minigrid
.
We support Python 3.7, 3.8, 3.9, 3.10 and 3.11 on Linux and macOS. We will accept PRs related to Windows, but do not officially support it.
The included environments can be divided in two groups. The original Minigrid
environments and the BabyAI
environments.
The list of the environments that were included in the original Minigrid
library can be found in the documentation. These environments have in common a triangle-like agent with a discrete action space that has to navigate a 2D map with different obstacles (Walls, Lava, Dynamic obstacles) depending on the environment. The task to be accomplished is described by a mission
string returned by the observation of the agent. These mission tasks include different goal-oriented and hierarchical missions such as picking up boxes, opening doors with keys or navigating a maze to reach a goal location. Each environment provides one or more configurations registered with Gymansium. Each environment is also programmatically tunable in terms of size/complexity, which is useful for curriculum learning or to fine-tune difficulty.
These environments have been imported from the BabyAI project library and the list of environments can also be found in the documentation. The purpose of this collection of environments is to perform research on grounded language learning. The environments are derived from the Minigrid
grid-world environments and include an additional functionality that generates synthetic
natural-looking instructions (e.g. “put the red ball next to the box on your left”) that command the the agent to navigate the world (including unlocking doors) and move objects to specified locations in order to accomplish the task.
The rl-starter-files is a repository with examples on how to train Minigrid
environments with RL algorithms. This code has been tested and is known to work with this environment. The default hyper-parameters are also known to converge.
The original gym-minigrid
environments were created as part of work done at Mila. The Dynamic obstacles environment were added as part of work done at IAS in TU Darmstadt and the University of Genoa for mobile robot navigation with dynamic obstacles.
To cite this project please use:
@inproceedings{MinigridMiniworld23,
author = {Maxime Chevalier{-}Boisvert and Bolun Dai and Mark Towers and Rodrigo Perez{-}Vicente and Lucas Willems and Salem Lahlou and Suman Pal and Pablo Samuel Castro and Jordan Terry},
title = {Minigrid {\&} Miniworld: Modular {\&} Customizable Reinforcement Learning Environments for Goal-Oriented Tasks},
booktitle = {Advances in Neural Information Processing Systems 36, New Orleans, LA, USA},
month = {December},
year = {2023},
}
If using the BabyAI
environments please also cite the following:
@article{chevalier2018babyai,
title={Babyai: A platform to study the sample efficiency of grounded language learning},
author={Chevalier-Boisvert, Maxime and Bahdanau, Dzmitry and Lahlou, Salem and Willems, Lucas and Saharia, Chitwan and Nguyen, Thien Huu and Bengio, Yoshua},
journal={arXiv preprint arXiv:1810.08272},
year={2018}
}
FAQs
Minimalistic gridworld reinforcement learning environments.
We found that minigrid demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 4 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Security experts warn that recent classification changes obscure the true scope of the NVD backlog as CVE volume hits all-time highs.
Security Fundamentals
Attackers use obfuscation to hide malware in open source packages. Learn how to spot these techniques across npm, PyPI, Maven, and more.
Security News
Join Socket for exclusive networking events, rooftop gatherings, and one-on-one meetings during BSidesSF and RSA 2025 in San Francisco.