
Research
/Security News
Critical Vulnerability in NestJS Devtools: Localhost RCE via Sandbox Escape
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
UNOFFICIAL Misato dataset pypi package. For instructions on dataset download see official GitHub page (https://github.com/t7morgen/misato-dataset).
We are a drug discovery community project :hugs:
Lets crack the 100+ ns MD, 30000+ protein-ligand structures and a whole new world of AI models for drug discovery together.
Want to get hands-on for drug discovery using AI?
Check out our Hugging Face spaces to run and visualize the adaptability model and to perform QM property predictions.
In this repository, we show how to download and apply the Misato database for AI models. You can access the calculated properties of different protein-ligand structures and use them for training in Pytorch based dataloaders. We provide a small sample of the dataset along with the repo.
You can freely download the FULL MISATO dataset from Zenodo using the links below:
wget -O data/MD/h5_files/MD.hdf5 https://zenodo.org/record/7711953/files/MD.hdf5
wget -O data/QM/h5_files/QM.hdf5 https://zenodo.org/record/7711953/files/QM.hdf5
Start with the notebook src/getting_started.ipynb to :
We recommend to pull our MISATO image from DockerHub or to create your own image (see docker/). The images use cuda version 11.8. We recommend to install on your own system a version of CUDA that is a least 11.8 to ensure that the drivers work correctly.
# clone project
git clone https://github.com/t7morgen/misato-dataset.git
cd misato-dataset
For singularity use:
# get the container image
singularity pull docker://sab148/misato-dataset
singularity shell misato.sif
For docker use:
sudo docker pull sab148/misato-dataset:latest
bash docker/run_bash_in_container.sh
├── data <- Project data
│ ├──MD
│ │ ├── h5_files <- storage of dataset
│ │ └── splits <- train, val, test splits
│ └──QM
│ │ ├── h5_files <- storage of dataset
│ │ └── splits <- train, val, test splits
│
├── src <- Source code
│ ├── data
│ │ ├── components <- Datasets and transforms
│ │ ├── md_datamodule.py <- MD Lightning data module
│ │ ├── qm_datamodule.py <- QM Lightning data module
│ │ │
│ │ └── processing <- Skripts for preprocessing, inference and conversion
│ │ ├──...
│ ├── getting_started.ipynb <- notebook : how to load data and interact with it
│ └── inference.ipynb <- notebook how to run inference
│
├── docker <- Dockerfile and execution script
└── README.md
In case you want to use conda for your own installation please create a new misato environment.
In order to install pytorch geometric we recommend to use pip (within conda) for installation and to follow the official installation instructions:pytorch-geometric/install
Depending on your CUDA version the instructions vary. We show an example for the CUDA 11.8.
conda create --name misato python=3
conda activate misato
conda install -c anaconda pandas pip h5py
pip3 install torch --index-url https://download.pytorch.org/whl/cu118 --no-cache
pip install joblib matplotlib
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu118.html
pip install pytorch-lightning==1.8.3
pip install torch-geometric
pip install ipykernel==5.5.5 ipywidgets==7.6.3 nglview==2.7.7
conda install -c conda-forge nb_conda_kernels
To run inference for MD you have to install ambertools. We recommend to install it in a separate conda environment.
conda create --name ambertools python=3
conda activate ambertools
conda install -c conda-forge ambertools nb_conda_kernels
pip install h5py jupyter ipykernel==5.5.5 ipywidgets==7.6.3 nglview==2.7.7
If you found this work useful please consider citing the article.
FAQs
UNOFFICIAL Misato dataset pypi package. For instructions on dataset download see official GitHub page (https://github.com/t7morgen/misato-dataset).
We found that misato-dataset demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
/Security News
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
Product
Customize license detection with Socket’s new license overlays: gain control, reduce noise, and handle edge cases with precision.
Product
Socket now supports Rust and Cargo, offering package search for all users and experimental SBOM generation for enterprise projects.