Socket
Book a DemoInstallSign in
Socket

ml-insights

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-insights

Package to calibrate and understand ML Models

1.1.0
pipPyPI
Maintainers
2

ML Insights

Welcome to ML-Insights!

This package contains two main sets of tools:

  • SplineCalib: Spline-based Probability Calibration
  • ModelXRay: Model Interpretability

Probability Calibration

For probability calibration, use the SplineCalib class. Detailed documentation is available here: https://ml-insights.readthedocs.io

Find more detailed examples here: https://github.com/numeristical/introspective/tree/master/examples

Model Interpretation

For understanding black-box models, the main entry point is the ModelXRay class. Instantiate it with the model and data. The data can be what the model was trained with, but intended to be used for out of bag or test data to see how the model performs when one feature is changed, holding everything else constant.

>>> import ml_insights as mli
>>> xray = mli.ModelXRay(model, data.sample(500))
>>> xray.feature_dependence_plots()

mli_screenshot

Find more detailed examples here: https://github.com/numeristical/introspective/tree/master/examples

Other Documentation

https://ml-insights.readthedocs.io

Disclaimer

We have tested this tool to the best of our ability, but understand that it may have bugs. It was developed on Python 3. Use at your own risk, but feel free to report any bugs to our github. https://github.com/numeristical/introspective

Installation

$ pip install ml_insights

Source

Find the latest version on github: https://github.com/numeristical/introspective

Feel free to fork and contribute!

License

Free software: MIT license <LICENSE>_

Developed By

  • Brian Lucena
  • Ramesh Sampath

References

Lucena, B. 2018. Spline-Based Probability Calibration. https://arxiv.org/abs/1809.07751

Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. 2014. Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. Journal of Computational and Graphical Statistics (March 2014)

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.