=======================================================================
MLflow Skinny: A Lightweight Machine Learning Lifecycle Platform Client
MLflow Skinny is a lightweight MLflow package without SQL storage, server, UI, or data science dependencies.
MLflow Skinny supports:
- Tracking operations (logging / loading / searching params, metrics, tags + logging / loading artifacts)
- Model registration, search, artifact loading, and deployment
- Execution of GitHub projects within notebook & against a remote target.
Additional dependencies can be installed to leverage the full feature set of MLflow. For example:
- To use the
mlflow.sklearn
component of MLflow Models, install scikit-learn
, numpy
and pandas
. - To use SQL-based metadata storage, install
sqlalchemy
, alembic
, and sqlparse
. - To use serving-based features, install
flask
and pandas
.
=============================================
MLflow: A Machine Learning Lifecycle Platform
MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code
into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be
used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you
currently run ML code (e.g. in notebooks, standalone applications or the cloud). MLflow's current components are:
MLflow Tracking <https://mlflow.org/docs/latest/tracking.html>
_: An API to log parameters, code, and
results in machine learning experiments and compare them using an interactive UI.MLflow Projects <https://mlflow.org/docs/latest/projects.html>
_: A code packaging format for reproducible
runs using Conda and Docker, so you can share your ML code with others.MLflow Models <https://mlflow.org/docs/latest/models.html>
_: A model packaging format and tools that let
you easily deploy the same model (from any ML library) to batch and real-time scoring on platforms such as
Docker, Apache Spark, Azure ML and AWS SageMaker.MLflow Model Registry <https://mlflow.org/docs/latest/model-registry.html>
_: A centralized model store, set of APIs, and UI, to collaboratively manage the full lifecycle of MLflow Models.
|docs| |license| |downloads| |slack| |twitter|
.. |docs| image:: https://img.shields.io/badge/docs-latest-success.svg?style=for-the-badge
:target: https://mlflow.org/docs/latest/index.html
:alt: Latest Docs
.. |license| image:: https://img.shields.io/badge/license-Apache%202-brightgreen.svg?style=for-the-badge&logo=apache
:target: https://github.com/mlflow/mlflow/blob/master/LICENSE.txt
:alt: Apache 2 License
.. |downloads| image:: https://img.shields.io/pypi/dw/mlflow?style=for-the-badge&logo=pypi&logoColor=white
:target: https://pepy.tech/project/mlflow
:alt: Total Downloads
.. |slack| image:: https://img.shields.io/badge/slack-@mlflow--users-CF0E5B.svg?logo=slack&logoColor=white&labelColor=3F0E40&style=for-the-badge
:target: Slack
_
:alt: Slack
.. |twitter| image:: https://img.shields.io/twitter/follow/MLflow?style=for-the-badge&labelColor=00ACEE&logo=twitter&logoColor=white
:target: https://twitter.com/MLflow
:alt: Account Twitter
Packages
+---------------+-------------------------------------------------------------+
| PyPI | |pypi-mlflow| |pypi-skinny| |
+---------------+-------------------------------------------------------------+
| conda-forge | |conda-mlflow| |conda-skinny| |
+---------------+-------------------------------------------------------------+
| CRAN | |cran-mlflow| |
+---------------+-------------------------------------------------------------+
| Maven Central | |maven-client| |maven-parent| |maven-scoring| |maven-spark| |
+---------------+-------------------------------------------------------------+
.. |pypi-mlflow| image:: https://img.shields.io/pypi/v/mlflow.svg?style=for-the-badge&logo=pypi&logoColor=white&label=mlflow
:target: https://pypi.org/project/mlflow/
:alt: PyPI - mlflow
.. |pypi-skinny| image:: https://img.shields.io/pypi/v/mlflow-skinny.svg?style=for-the-badge&logo=pypi&logoColor=white&label=mlflow-skinny
:target: https://pypi.org/project/mlflow-skinny/
:alt: PyPI - mlflow-skinny
.. |conda-mlflow| image:: https://img.shields.io/conda/vn/conda-forge/mlflow.svg?style=for-the-badge&logo=anaconda&label=mlflow
:target: https://anaconda.org/conda-forge/mlflow
:alt: Conda - mlflow
.. |conda-skinny| image:: https://img.shields.io/conda/vn/conda-forge/mlflow.svg?style=for-the-badge&logo=anaconda&label=mlflow-skinny
:target: https://anaconda.org/conda-forge/mlflow-skinny
:alt: Conda - mlflow-skinny
.. |cran-mlflow| image:: https://img.shields.io/cran/v/mlflow.svg?style=for-the-badge&logo=r&label=mlflow
:target: https://cran.r-project.org/package=mlflow
:alt: CRAN - mlflow
.. |maven-client| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-client
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-client
:alt: Maven Central - mlflow-client
.. |maven-parent| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-parent
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-parent
:alt: Maven Central - mlflow-parent
.. |maven-scoring| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-scoring
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-scoring
:alt: Maven Central - mlflow-scoring
.. |maven-spark| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-spark
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-spark
:alt: Maven Central - mlflow-spark
.. _Slack: https://mlflow.org/slack
Job Statuses
|examples| |cross-version-tests| |r-devel| |test-requirements| |push-images| |slow-tests| |website-e2e|
.. |examples| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/examples.yml.svg?branch=master&event=schedule&label=Examples&style=for-the-badge&logo=github
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/examples.yml?query=workflow%3AExamples+event%3Aschedule
:alt: Examples Action Status
.. |cross-version-tests| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/cross-version-tests.yml.svg?branch=master&event=schedule&label=Cross%20version%20tests&style=for-the-badge&logo=github
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/cross-version-tests.yml?query=workflow%3A%22Cross+version+tests%22+event%3Aschedule
.. |r-devel| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/r.yml.svg?branch=master&event=schedule&label=r-devel&style=for-the-badge&logo=github
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/r.yml?query=workflow%3AR+event%3Aschedule
.. |test-requirements| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/requirements.yml.svg?branch=master&event=schedule&label=test%20requirements&logo=github&style=for-the-badge
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/requirements.yml?query=workflow%3A"Test+requirements"+event%3Aschedule
.. |push-images| image:: https://img.shields.io/github/actions/workflow/status/mlflow/mlflow/push-images.yml.svg?event=release&label=push-images&logo=github&style=for-the-badge
:target: https://github.com/mlflow/mlflow/actions/workflows/push-images.yml?query=event%3Arelease
.. |slow-tests| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/slow-tests.yml.svg?branch=master&event=schedule&label=slow-tests&logo=github&style=for-the-badge
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/slow-tests.yml?query=event%3Aschedule
.. |website-e2e| image:: https://img.shields.io/github/actions/workflow/status/mlflow/mlflow-website/e2e.yml.svg?branch=main&event=schedule&label=website-e2e&logo=github&style=for-the-badge
:target: https://github.com/mlflow/mlflow-website/actions/workflows/e2e.yml?query=event%3Aschedule
Installing
Install MLflow from PyPI via pip install mlflow
MLflow requires conda
to be on the PATH
for the projects feature.
Nightly snapshots of MLflow master are also available here <https://mlflow-snapshots.s3-us-west-2.amazonaws.com/>
_.
Install a lower dependency subset of MLflow from PyPI via pip install mlflow-skinny
Extra dependencies can be added per desired scenario.
For example, pip install mlflow-skinny pandas numpy
allows for mlflow.pyfunc.log_model support.
Documentation
Official documentation for MLflow can be found at https://mlflow.org/docs/latest/index.html.
Roadmap
The current MLflow Roadmap is available at https://github.com/mlflow/mlflow/milestone/3. We are
seeking contributions to all of our roadmap items with the help wanted
label. Please see the
Contributing
_ section for more information.
For help or questions about MLflow usage (e.g. "how do I do X?") see the docs <https://mlflow.org/docs/latest/index.html>
_
or Stack Overflow <https://stackoverflow.com/questions/tagged/mlflow>
_.
To report a bug, file a documentation issue, or submit a feature request, please open a GitHub issue.
For release announcements and other discussions, please subscribe to our mailing list (mlflow-users@googlegroups.com)
or join us on Slack
_.
Running a Sample App With the Tracking API
The programs in examples
use the MLflow Tracking API. For instance, run::
python examples/quickstart/mlflow_tracking.py
This program will use MLflow Tracking API <https://mlflow.org/docs/latest/tracking.html>
_,
which logs tracking data in ./mlruns
. This can then be viewed with the Tracking UI.
Launching the Tracking UI
The MLflow Tracking UI will show runs logged in ./mlruns
at <http://localhost:5000>
_.
Start it with::
mlflow ui
Note: Running mlflow ui
from within a clone of MLflow is not recommended - doing so will
run the dev UI from source. We recommend running the UI from a different working directory,
specifying a backend store via the --backend-store-uri
option. Alternatively, see
instructions for running the dev UI in the contributor guide <CONTRIBUTING.md>
_.
Running a Project from a URI
The mlflow run
command lets you run a project packaged with a MLproject file from a local path
or a Git URI::
mlflow run examples/sklearn_elasticnet_wine -P alpha=0.4
mlflow run https://github.com/mlflow/mlflow-example.git -P alpha=0.4
See examples/sklearn_elasticnet_wine
for a sample project with an MLproject file.
Saving and Serving Models
To illustrate managing models, the mlflow.sklearn
package can log scikit-learn models as
MLflow artifacts and then load them again for serving. There is an example training application in
examples/sklearn_logistic_regression/train.py
that you can run as follows::
$ python examples/sklearn_logistic_regression/train.py
Score: 0.666
Model saved in run <run-id>
$ mlflow models serve --model-uri runs:/<run-id>/model
$ curl -d '{"dataframe_split": {"columns":[0],"index":[0,1],"data":[[1],[-1]]}}' -H 'Content-Type: application/json' localhost:5000/invocations
Note: If using MLflow skinny (pip install mlflow-skinny
) for model serving, additional
required dependencies (namely, flask
) will need to be installed for the MLflow server to function.
Official MLflow Docker Image
The official MLflow Docker image is available on GitHub Container Registry at https://ghcr.io/mlflow/mlflow.
.. code-block:: shell
export CR_PAT=YOUR_TOKEN
echo $CR_PAT | docker login ghcr.io -u USERNAME --password-stdin
# Pull the latest version
docker pull ghcr.io/mlflow/mlflow
# Pull 2.2.1
docker pull ghcr.io/mlflow/mlflow:v2.2.1
Contributing
We happily welcome contributions to MLflow. We are also seeking contributions to items on the
MLflow Roadmap <https://github.com/mlflow/mlflow/milestone/3>
. Please see our
contribution guide <CONTRIBUTING.md>
to learn more about contributing to MLflow.
Core Members
MLflow is currently maintained by the following core members with significant contributions from hundreds of exceptionally talented community members.
Ben Wilson <https://github.com/BenWilson2>
_Corey Zumar <https://github.com/dbczumar>
_Daniel Lok <https://github.com/daniellok-db>
_Gabriel Fu <https://github.com/gabrielfu>
_Harutaka Kawamura <https://github.com/harupy>
_Serena Ruan <https://github.com/serena-ruan>
_Weichen Xu <https://github.com/WeichenXu123>
_Yuki Watanabe <https://github.com/B-Step62>
_Tomu Hirata <https://github.com/TomeHirata>
_