Research
Security News
Quasar RAT Disguised as an npm Package for Detecting Vulnerabilities in Ethereum Smart Contracts
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
📘 Documentation | 🛠️ Installation | 👀 Model Zoo | 🆕 Update News | 🤔 Reporting Issues
:point_right: MMClassification 1.0 branch is in trial, welcome every to try it and discuss with us! :point_left:
English | 简体中文
MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project.
The master branch works with PyTorch 1.5+.
The MMClassification 1.0 has released! It's still unstable and in release candidate. If you want to try it, go to the 1.x branch and discuss it with us in the discussion.
v0.25.0 was released in 06/12/2022. Highlights of the new version:
dist_train_arm.sh
for ARM device.v0.24.1 was released in 31/10/2022. Highlights of the new version:
v0.24.0 was released in 30/9/2022. Highlights of the new version:
Please refer to changelog.md for more details and other release history.
Below are quick steps for installation:
conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision==0.11.0 -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
git clone https://github.com/open-mmlab/mmclassification.git
cd mmclassification
pip3 install -e .
Please refer to install.md for more detailed installation and dataset preparation.
Please see Getting Started for the basic usage of MMClassification. There are also tutorials:
Colab tutorials are also provided:
Results and models are available in the model zoo.
We appreciate all contributions to improve MMClassification. Please refer to CONTRUBUTING.md for the contributing guideline.
MMClassification is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new classifiers.
If you find this project useful in your research, please consider cite:
@misc{2020mmclassification,
title={OpenMMLab's Image Classification Toolbox and Benchmark},
author={MMClassification Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmclassification}},
year={2020}
}
This project is released under the Apache 2.0 license.
FAQs
OpenMMLab Image Classification Toolbox and Benchmark
We found that mmcls demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.