
Security News
MCP Community Begins Work on Official MCP Metaregistry
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
📘Documentation | 🛠️Installation | 👀Model Zoo | 🤔Reporting Issues
English | 简体中文
MMRazor is a model compression toolkit for model slimming and AutoML, which includes 3 mainstream technologies:
It is a part of the OpenMMLab project.
Major features:
Compatibility
MMRazor can be easily applied to various projects in OpenMMLab, due to the similar architecture design of OpenMMLab as well as the decoupling of slimming algorithms and vision tasks.
Flexibility
Different algorithms, e.g., NAS, pruning and KD, can be incorporated in a plug-n-play manner to build a more powerful system.
Convenience
With better modular design, developers can implement new model compression algorithms with only a few codes, or even by simply modifying config files.
About MMRazor's design and implementation, please refer to tutorials for more details.
The default branch is now main
and the code on the branch has been upgraded to v1.0.0. The old master
branch code now exists on the 0.x branch
MMRazor v1.0.0 was released in 2023-4-24, Major updates from 1.0.0rc2 include:
To know more about the updates in MMRazor 1.0, please refer to Changelog for more details!
Results and models are available in the model zoo.
Supported algorithms:
MMRazor depends on PyTorch, MMCV and MMEngine.
Please refer to installation.md for more detailed instruction.
Please refer to user guides for the basic usage of MMRazor. There are also advanced guides:
We appreciate all contributions to improve MMRazor. Please refer to CONTRUBUTING.md for the contributing guideline.
MMRazor is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new model compression methods.
If you find this project useful in your research, please consider cite:
@misc{2021mmrazor,
title={OpenMMLab Model Compression Toolbox and Benchmark},
author={MMRazor Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmrazor}},
year={2021}
}
This project is released under the Apache 2.0 license.
FAQs
OpenMMLab Model Compression Toolbox and Benchmark
We found that mmrazor demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
Research
Security News
Socket uncovers an npm Trojan stealing crypto wallets and BullX credentials via obfuscated code and Telegram exfiltration.
Research
Security News
Malicious npm packages posing as developer tools target macOS Cursor IDE users, stealing credentials and modifying files to gain persistent backdoor access.