
Research
PyPI Package Disguised as Instagram Growth Tool Harvests User Credentials
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Medical Open Network for AI
MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
Please see the technical highlights and What's New of the milestone releases.
To install the current release, you can simply run:
pip install monai
Please refer to the installation guide for other installation options.
MedNIST demo and MONAI for PyTorch Users are available on Colab.
Examples and notebook tutorials are located at Project-MONAI/tutorials.
Technical documentation is available at docs.monai.io.
If you have used MONAI in your research, please cite us! The citation can be exported from: https://arxiv.org/abs/2211.02701.
The MONAI Model Zoo is a place for researchers and data scientists to share the latest and great models from the community. Utilizing the MONAI Bundle format makes it easy to get started building workflows with MONAI.
For guidance on making a contribution to MONAI, see the contributing guidelines.
Join the conversation on Twitter/X @ProjectMONAI or join our Slack channel.
Ask and answer questions over on MONAI's GitHub Discussions tab.
FAQs
AI Toolkit for Healthcare Imaging
We found that monai demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.
Security News
Research
Socket uncovered two npm packages that register hidden HTTP endpoints to delete all files on command.