
Security News
AI Agent Lands PRs in Major OSS Projects, Targets Maintainers via Cold Outreach
An AI agent is merging PRs into major OSS projects and cold-emailing maintainers to drum up more work.
mongodbshell
Advanced tools
The Python shell is the ideal environment for Python developers to interact
with MongoDB. However output cursors and interacting with the database requires
a little more boilerplate than is convenient. the mongodbshell package
provides a set a convenience functions and objects to allow easier
interaction with MongoDB via the Python interpreter.
you can install the software with pip3 or pipenv. The mongodbshell only
supports Python 3.
$ pip3 install mongodbshell
A complete set of API docs can be found on read the docs
First we create a MongoDB object. This is a proxy for all the
commands we can run using MongoDBShell.
>>> client=mongodbshell.MongoDB()
>>> client
mongodbshell.MongoDB('test', 'test', 'mongodb://localhost:27017')
As you can see a MongoDB object embeds the default database test and collection
test. We can also access the native MongoClient object.
Each MongoDB object has host of standard properties:
>>> client
mongodbshell.MongoDB('test', 'test', 'mongodb://localhost:27017')
>>> client.client
MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True)
>>> client.database
Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'test')
>>> client.collection
Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'test'), 'test')
>>> client.uri
'mongodb://localhost:27017'
>>>
There are also convenience functions for the most popular operations:
>>> client.is_master()
{'ismaster': True,
'localTime': datetime.datetime(2019, 1, 16, 15, 15, 41, 87000),
'logicalSessionTimeoutMinutes': 30,
'maxBsonObjectSize': 16777216,
'maxMessageSizeBytes': 48000000,
'maxWireVersion': 7,
'maxWriteBatchSize': 100000,
'minWireVersion': 0,
'ok': 1.0,
'readOnly': False}
>>> mongo_client.insert_one({"name" : "Joe Drumgoole", "twitter_handle" : "@jdrumgoole"})
ObjectId('5c3f4f2fc3b498d6674b08f0')
>>> mongo_client.find_one( {"name" : "Joe Drumgoole"})
1 {'_id': ObjectId('5c3f4b04c3b498d4a1c6ce22'),
2 'name': 'Joe Drumgoole',
3 'twitter_handle': '@jdrumgoole'}
Line numbers are added to output by default. You can turn off line numbers by
setting the line_numbers flag to false.
>>> client.insert_one({"name" : "Joe Drumgoole", "twitter_handle" : "@jdrumgoole"})
ObjectId('5c3f4f2fc3b498d6674b08f0')
>>> client.find_one( {"name" : "Joe Drumgoole"})
1 {'_id': ObjectId('5c3f4b04c3b498d4a1c6ce22'),
2 'name': 'Joe Drumgoole',
3 'twitter_handle': '@jdrumgoole'}
>>> client.line_numbers = False # Turn off line numbers
>>> client.find_one( {"name" : "Joe Drumgoole"})
{'_id': ObjectId('5c3f4b04c3b498d4a1c6ce22'),
'name': 'Joe Drumgoole',
'twitter_handle': '@jdrumgoole'}
>>>
You can connect to a different database by using the MongoDB class. Here is an
example connection to a MongoDB Atlas hosted datbase.
>>> from mongodbshell import MongoDB
>>> atlas=MongoDB(uri="mongodb+srv://readonly:readonly@demodata-rgl39.mongodb.net/test?retryWrites=true", database="demo", collection="zipcodes")
>>> atlas.find_one()
1 {'_id': '01069',
2 'city': 'PALMER',
3 'loc': [-72.328785, 42.176233],
4 'pop': 9778,
5 'state': 'MA'}
If you run a query in the python shell it will return a cursor and to look at
the objects in the cursor you need to either write a loop to consume the cursor
or explicitly call next() on each cursor item.
>>> c=pymongo.MongoClient("mongodb+srv://readonly:readonly@demodata-rgl39.mongodb.net/test?retryWrites=true")
>>> db=c["demo"]
>>> collection=db["zipcodes"]
>>> collection.find()
<pymongo.cursor.Cursor object at 0x105bf1d68>
>>> cursor=collection.find()
>>> next(cursor)
{'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
>>> next(cursor)
{'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
>>>
This is tedious and becomes even more so when the objects are large enough to
scroll off the screen. This is not a problem with the mongodbshell as the
MongoDB object will automatically handle pretty printing and paginating outing.
>>> atlas.find()
1 {'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
2 {'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
3 {'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
4 {'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
5 {'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
6 {'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
7 {'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
8 {'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
9 {'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
10 {'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
11 {'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
12 {'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
13 {'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
14 {'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}
Hit Return to continue (q or quit to exit)
Pagination will dynamically adjust to screen height.
The MongoDB class can send output to a file by setting the output_file property
on the MongoDB class.
>>> atlas.output_file="zipcodes.txt"
>>> atlas.find()
Output is also going to 'zipcodes.txt'
1 {'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
2 {'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
3 {'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
4 {'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
5 {'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
6 {'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
7 {'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
8 {'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
9 {'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
10 {'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
11 {'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
12 {'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
13 {'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
14 {'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}
>>> print(open('zipcodes.txt').read())
{'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
{'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
{'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
{'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
{'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
{'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
{'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
{'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
{'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
{'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
{'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
{'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
{'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
{'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}
Output will continue to be sent to the output_file until the output_file is assigned
None or the empty string ("").
You can set the following options on the MongoDB class objects.
MongoDB.line_numbers : Bool. True to display line numbers in output, False to
remove them.
MongoDB.pretty_print : Bool. True to use pprint.pprint to output documents.
False to write them out as the database returned them.
MongoDB.paginate : Bool. True to paginate output based on screen height. False to just
send all output directly to console.
MongoDB.output_file : Str. Define a file to write results to. All output is
appended to the file. Each line is flushed so content is not lost. Set output_file
ton None or the emtpy string ("") to stop output going to a file.
FAQs
mongodbshell is a class that makes it easy to use MongoDB in the python shell
We found that mongodbshell demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
An AI agent is merging PRs into major OSS projects and cold-emailing maintainers to drum up more work.

Research
/Security News
Chrome extension CL Suite by @CLMasters neutralizes 2FA for Facebook and Meta Business accounts while exfiltrating Business Manager contact and analytics data.

Security News
After Matplotlib rejected an AI-written PR, the agent fired back with a blog post, igniting debate over AI contributions and maintainer burden.