Socket
Book a DemoInstallSign in
Socket

mutornadomon

Package Overview
Dependencies
Maintainers
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

mutornadomon

Library of standard monitoring hooks for the Tornado framework

0.5.1
pipPyPI
Maintainers
3

Build Status Coverage Status

mutornadomon

µtornadomon is a library designed to be used with Tornado web applications. It adds an endpoint (/mutornadomon) to HTTP servers which outputs application statistics for use with standard metric collectors.

Usage

The monitor is initialized using mutornadomon.config.initialize_mutornadomon.

Exposing an HTTP endpoint

If you only pass a tornado web application, it will include request/response statistics, and expose an HTTP endpoint for polling by external processes:

from mutornadomon.config import initialize_mutornadomon
import signal

[...]

application = tornado.web.Application(...)
monitor = initialize_mutornadomon(application)

def shut_down(*args):
    monitor.stop()
    some_other_application_stop_function()
    tornado.ioloop.IOLoop.current().stop()

for sig in (signal.SIGQUIT, signal.SIGINT, signal.SIGTERM):
    signal.signal(sig, shut_down)

This will add a /mutornadomon endpoint to the web application.

Here is an example request to that endpoint:

$ curl http://localhost:8080/mutornadomon
{"process": {"uptime": 38.98995113372803, "num_fds": 8, "meminfo": {"rss_bytes": 14020608, "vsz_bytes": 2530562048}, "cpu": {"num_threads": 1, "system_time": 0.049356776, "user_time": 0.182635456}}, "max_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "min_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": -0.004179096221923834}, "gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "counters": {"callbacks": 388, "requests": 6, "localhost_requests": 6, "private_requests": 6}}

If you want to add your own metrics, you can do so by calling the .kv() or .count() methods on the monitor object at any time.

The HTTP endpoint is restricted to only respond to request from loopback.

Providing a publishing callback

Alternatively, instead of polling the HTTP interface, you can pass in a publisher callback:

import pprint

def publisher(metrics):
    pprint.pprint(metrics)

monitor = initialize_mutornadomon(application, publisher=publisher)

By default, this will call the publisher callback every 10 seconds. To override this pass the publish_interval parameter (in miliseconds).

Monitoring non-web applications

If you don't pass an application object, other stats can still be collected:

import pprint

def publisher(metrics):
    pprint.pprint(metrics)

monitor = initialize_mutornadomon(publisher=publisher)

This only works with the publisher callback interface.

Keywords

monitoring

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.