New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

mygene

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

mygene

Python Client for MyGene.Info services.

  • 3.2.2
  • PyPI
  • Socket score

Maintainers
2

.. image:: https://pepy.tech/badge/mygene :target: https://pepy.tech/project/mygene

.. image:: https://img.shields.io/pypi/dm/mygene.svg :target: https://pypistats.org/packages/mygene

.. image:: https://badge.fury.io/py/mygene.svg :target: https://pypi.org/project/mygene/

.. image:: https://img.shields.io/pypi/pyversions/mygene.svg :target: https://pypi.org/project/mygene/

.. image:: https://img.shields.io/pypi/format/mygene.svg :target: https://pypi.org/project/mygene/

.. image:: https://img.shields.io/pypi/status/mygene.svg :target: https://pypi.org/project/mygene/

Intro

MyGene.Info_ provides simple-to-use REST web services to query/retrieve gene annotation data. It's designed with simplicity and performance emphasized. mygene, is an easy-to-use Python wrapper to access MyGene.Info_ services.

.. _MyGene.Info: http://mygene.info .. _biothings_client: https://pypi.org/project/biothings-client/ .. _mygene: https://pypi.org/project/mygene/

Since v3.1.0, mygene_ Python package has become a thin wrapper of underlying biothings_client_ package, a universal Python client for all BioThings APIs <http://biothings.io>, including MyGene.info. The installation of mygene_ will install biothings_client_ automatically. The following code snippets are essentially equivalent:

  • Continue using mygene_ package

    .. code-block:: python

      In [1]: import mygene
      In [2]: mg = mygene.MyGeneInfo()
    
  • Use biothings_client_ package directly

    .. code-block:: python

      In [1]: from biothings_client import get_client
      In [2]: mg = get_client('gene')
    

After that, the use of mg instance is exactly the same, e.g. the usage examples below.

Requirements

python >=2.7 (including python3)

(Python 2.6 might still work, but it's not supported any more since v3.1.0.)

biothings_client_ (>=0.2.0, install using "pip install biothings_client")

Optional dependencies

`pandas <http://pandas.pydata.org>`_ (install using "pip install pandas") is required for
returning a list of gene objects as `DataFrame <http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe>`_.

Installation

Option 1
      pip install mygene

Option 2
      download/extract the source code and run::

       python setup.py install

Option 3
      install the latest code directly from the repository::

        pip install -e git+https://github.com/biothings/mygene.py#egg=mygene

Version history

`CHANGES.txt <https://raw.githubusercontent.com/SuLab/mygene.py/master/CHANGES.txt>`_

Tutorial

  • ID mapping using mygene module in Python <http://nbviewer.ipython.org/6771106>_

Documentation

http://mygene-py.readthedocs.org/

Usage

.. code-block:: python

In [1]: import mygene

In [2]: mg = mygene.MyGeneInfo()

In [3]: mg.getgene(1017)
Out[3]:
{'_id': '1017',
 'entrezgene': 1017,
 'name': 'cyclin-dependent kinase 2',
 'symbol': 'CDK2',
 'taxid': 9606,
 ...
}

# use "fields" parameter to return a subset of fields
In [4]: mg.getgene(1017, fields='name,symbol,refseq')
Out[4]:
{'_id': '1017',
 'name': 'cyclin-dependent kinase 2',
 'refseq': {'genomic': ['AC_000144.1',
   'NC_000012.11',
   'NG_028086.1',
   'NT_029419.12',
   'NW_001838059.1'],
  'protein': ['NP_001789.2', 'NP_439892.2'],
  'rna': ['NM_001798.3', 'NM_052827.2']},
 'symbol': 'CDK2'}

In [5]: mg.getgene(1017, fields=['name', 'symbol', 'refseq.rna'])
Out[5]:
{'_id': '1017',
 'name': 'cyclin-dependent kinase 2',
 'refseq': {'rna': ['NM_001798.5', 'NM_052827.3']},
 'symbol': 'CDK2'}


In [6]: mg.getgenes([1017,1018,'ENSG00000148795'], fields='name,symbol,entrezgene,taxid')
Out[6]:
[{'_id': '1017',
  'entrezgene': 1017,
  'name': 'cyclin-dependent kinase 2',
  'query': '1017',
  'symbol': 'CDK2',
  'taxid': 9606},
 {'_id': '1018',
  'entrezgene': 1018,
  'name': 'cyclin-dependent kinase 3',
  'query': '1018',
  'symbol': 'CDK3',
  'taxid': 9606},
 {'_id': '1586',
  'entrezgene': 1586,
  'name': 'cytochrome P450, family 17, subfamily A, polypeptide 1',
  'query': 'ENSG00000148795',
  'symbol': 'CYP17A1',
  'taxid': 9606}]

# return results in Pandas DataFrame
In [7]: mg.getgenes([1017,1018,'ENSG00000148795'], fields='name,symbol,entrezgene,taxid', as_dataframe=True)
Out[7]:
                  _id  entrezgene  \
query
1017             1017        1017
1018             1018        1018
ENSG00000148795  1586        1586

                                                              name   symbol  \
query
1017                                     cyclin-dependent kinase 2     CDK2
1018                                     cyclin-dependent kinase 3     CDK3
ENSG00000148795  cytochrome P450, family 17, subfamily A, polyp...  CYP17A1

                 taxid
query
1017              9606
1018              9606
ENSG00000148795   9606

[3 rows x 5 columns]

In [8]:  mg.query('cdk2', size=5)
Out[8]:
{'hits': [{'_id': '1017',
   '_score': 373.24667,
   'entrezgene': 1017,
   'name': 'cyclin-dependent kinase 2',
   'symbol': 'CDK2',
   'taxid': 9606},
  {'_id': '12566',
   '_score': 353.90176,
   'entrezgene': 12566,
   'name': 'cyclin-dependent kinase 2',
   'symbol': 'Cdk2',
   'taxid': 10090},
  {'_id': '362817',
   '_score': 264.88477,
   'entrezgene': 362817,
   'name': 'cyclin dependent kinase 2',
   'symbol': 'Cdk2',
   'taxid': 10116},
  {'_id': '52004',
   '_score': 21.221401,
   'entrezgene': 52004,
   'name': 'CDK2-associated protein 2',
   'symbol': 'Cdk2ap2',
   'taxid': 10090},
  {'_id': '143384',
   '_score': 18.617256,
   'entrezgene': 143384,
   'name': 'CDK2-associated, cullin domain 1',
   'symbol': 'CACUL1',
   'taxid': 9606}],
 'max_score': 373.24667,
 'took': 10,
 'total': 28}

In [9]: mg.query('reporter:1000_at')
Out[9]:
{'hits': [{'_id': '5595',
   '_score': 11.163337,
   'entrezgene': 5595,
   'name': 'mitogen-activated protein kinase 3',
   'symbol': 'MAPK3',
   'taxid': 9606}],
 'max_score': 11.163337,
 'took': 6,
 'total': 1}

In [10]: mg.query('symbol:cdk2', species='human')
Out[10]:
{'hits': [{'_id': '1017',
   '_score': 84.17707,
   'entrezgene': 1017,
   'name': 'cyclin-dependent kinase 2',
   'symbol': 'CDK2',
   'taxid': 9606}],
 'max_score': 84.17707,
 'took': 27,
 'total': 1}

In [11]: mg.querymany([1017, '695'], scopes='entrezgene', species='human')
Finished.
Out[11]:
[{'_id': '1017',
  'entrezgene': 1017,
  'name': 'cyclin-dependent kinase 2',
  'query': '1017',
  'symbol': 'CDK2',
  'taxid': 9606},
 {'_id': '695',
  'entrezgene': 695,
  'name': 'Bruton agammaglobulinemia tyrosine kinase',
  'query': '695',
  'symbol': 'BTK',
  'taxid': 9606}]

In [12]: mg.querymany([1017, '695'], scopes='entrezgene', species=9606)
Finished.
Out[12]:
[{'_id': '1017',
  'entrezgene': 1017,
  'name': 'cyclin-dependent kinase 2',
  'query': '1017',
  'symbol': 'CDK2',
  'taxid': 9606},
 {'_id': '695',
  'entrezgene': 695,
  'name': 'Bruton agammaglobulinemia tyrosine kinase',
  'query': '695',
  'symbol': 'BTK',
  'taxid': 9606}]

In [13]: mg.querymany([1017, '695'], scopes='entrezgene', species=9606, as_dataframe=True)
Finished.
Out[13]:
        _id  entrezgene                                       name symbol  \
query
1017   1017        1017                  cyclin-dependent kinase 2   CDK2
695     695         695  Bruton agammaglobulinemia tyrosine kinase    BTK

       taxid
query
1017    9606
695     9606

[2 rows x 5 columns]

In [14]: mg.querymany([1017, '695', 'NA_TEST'], scopes='entrezgene', species='human')
Finished.
Out[14]:
[{'_id': '1017',
  'entrezgene': 1017,
  'name': 'cyclin-dependent kinase 2',
  'query': '1017',
  'symbol': 'CDK2',
  'taxid': 9606},
 {'_id': '695',
  'entrezgene': 695,
  'name': 'Bruton agammaglobulinemia tyrosine kinase',
  'query': '695',
  'symbol': 'BTK',
  'taxid': 9606},
 {'notfound': True, 'query': 'NA_TEST'}]

# query all human kinases using fetch_all parameter:
In [15]: kinases = mg.query('name:kinase', species='human', fetch_all=True)
In [16]: kinases
Out [16]" <generator object _fetch_all at 0x7fec027d2eb0>

# kinases is a Python generator, now you can loop through it to get all 1073 hits:
In [16]: for gene in kinases:
   ....:     print gene['_id'], gene['symbol']
Out [16]: <output omitted here>

Contact

Drop us any question or feedback: * biothings@googlegroups.com (public discussion) * help@mygene.info (reach devs privately) * Github issues <https://github.com/biothings/mygene.info/issues>_ * on twitter @mygeneinfo <https://twitter.com/mygeneinfo>_ * Post a question on BioStars.org <https://www.biostars.org/p/new/post/?tag_val=mygene>_ with tag #mygene.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc