🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Sign inDemoInstall
Socket

natural-selection

Package Overview
Dependencies
Maintainers
0
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

natural-selection

Tools for running evolutionary algorithm experiments

0.2.33
PyPI
Maintainers
0

Natural Selection

      ,(*                                         
           @@                                     
*@       @@% *@                                   
*@     @@   %@ @                                  
 @@/ @@   @@   @@                                 
   @@@(,@(   @/ @@@@@@@&@@@@@                     
                 @ @&  @@  /@@@#                  
                 /@  @@  ,@@   @@                 
                  ,@@   @@   @@  @                
                    %@@@   @@    @@@@@@@@@@@@@    
                          ,,      @  @@  @@  &@@@ 
                                  %@@  @@  &@@  @@
                                   @%@@  &@@     @
                                    ,@,%@@        
                                       @@@@@@     
             _                   _ 
 _ __   __ _| |_ _   _ _ __ __ _| |
| '_ \ / _` | __| | | | '__/ _` | |
| | | | (_| | |_| |_| | | | (_| | |
|_| |_|\__,_|\__|\__,_|_|  \__,_|_|                                   
          _           _   _             
 ___  ___| | ___  ___| |_(_) ___  _ __  
/ __|/ _ \ |/ _ \/ __| __| |/ _ \| '_ \ 
\__ \  __/ |  __/ (__| |_| | (_) | | | |
|___/\___|_|\___|\___|\__|_|\___/|_| |_|
                                        
by Zipfian Science                               

Python tools for creating and running Evolutionary Algorithm (EA) experiments by Zipfian Science.

  • For documentation, see docs.
  • Source on GitHub.
  • For history, see changelog

Install

$ pip install natural-selection

And use

from natural_selection.genetic_algorithms import Gene, Chromosome, Individual, Island
from natural_selection.genetic_algorithms.utils.random_functions import random_int, random_gaussian

# Create a gene
g_1 = Gene(name="test_int", value=3, gene_max=10, gene_min=1, randomise_function=random_int)
g_2 = Gene(name="test_real", value=0.5, gene_max=1.0, gene_min=0.1, randomise_function=random_gaussian)

# Add a list of genes to a genome
gen = Chromosome([g_1, g_2])

# Next, create an individual to carry these genes and evaluate them
fitness_function = lambda island, individual, x, y: individual.chromosome[0].value * x + individual.chromosome[0].value * y
adam = Individual(fitness_function, name="Adam", chromosome=gen)

# Now we can create an island for running the evolutionary process
# Notice the fitness function parameters are given here.
params = dict()
params['x'] = 0.5
params['y'] = 0.2
isolated_island = Island(function_params=params)

# Using a single individual, we can create a new population
isolated_island.initialise(adam, population_size=5)

# And finally, we let the randomness of life do its thing: optimise
best_individual = isolated_island.evolve(n_generations=5)

# After running for a few generations, we have an individual with the highest fitness
fitness = best_individual.fitness
genes = best_individual.chromosome

for gene in genes:
  print(gene.name, gene.value)

Release

  • Date: 2023-02-15
  • Version: 0.2.33

Keywords

GENETIC ALGORITHMS

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts