🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more

nerd-mega-compute

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nerd-mega-compute

Run Python functions on powerful cloud servers with a simple decorator

0.1.62
Maintainers
1

NerdMegaCompute

Run compute-intensive Python functions in the cloud with a simple decorator.

Installation

From PyPI

Install via:

pip install nerd-mega-compute

Quick Start

  • Set up your API key: Create a .env file in your project directory with:
API_KEY=your_api_key_here
  • Decorate your function: Use the @cloud_compute decorator to run your function in the cloud:
from nerd_megacompute import cloud_compute

@cloud_compute(cores=8)  # Specify number of CPU cores
def my_intensive_function(data):
   result = process_data(data)  # Your compute-intensive code
   return result

result = my_intensive_function(my_data)

Example

Test a simple addition:

from nerd_megacompute import cloud_compute

@cloud_compute(cores=2)
def add_numbers(a, b):
   print("Starting simple addition...")
   result = a + b
   print(f"Result: {result}")
   return result

print("Running a simple test...")
result = add_numbers(40, 2)
print(f"The answer is {result}")

Features

  • Execute intensive tasks on cloud servers
  • Scale CPU cores for faster processing
  • Automatic data transfer to/from the cloud
  • Real-time progress updates

Configuration & Parameters

API Key & Debug Mode

Configure directly in code if not using a .env file:

from nerd_megacompute import set_api_key, set_debug_mode
set_api_key('your_api_key_here')
set_debug_mode(True)

@cloud_compute Parameters

  • cores (default: 8): Number of CPU cores in the cloud.
  • timeout (default: 1800): Maximum wait time in seconds.

Library Support & Restrictions

Your code can only use Python’s standard library or the following third-party libraries:

  • numpy, scipy, pandas, matplotlib, scikit-learn, jupyter
  • statsmodels, seaborn, pillow, opencv-python, scikit-image, tensorflow
  • torch, keras, xgboost, lightgbm, sympy, networkx, plotly, bokeh
  • numba, dask, h5py, tables, openpyxl, sqlalchemy, boto3, python-dotenv, requests

Why? This ensures compatibility and security in the cloud. Unsupported libraries may cause runtime errors.

Recommendations:

  • Verify usage of supported libraries.
  • Test locally with the same constraints.
  • For additional libraries, refactor the code or contact us.

Multi-Core Usage

Guidelines

  • Single-threaded code: Multiple cores won’t speed up functions not designed for parallel execution.

    @cloud_compute(cores=8)
    def single_threaded_function(data):
      return [process_item(item) for item in data]
    
  • Parallelized code: Use multi-threading or multi-processing to utilize more cores effectively.

    from multiprocessing import Pool
    
    @cloud_compute(cores=8)
    def multi_core_function(data):
      with Pool(8) as pool:
         result = pool.map(process_item, data)
      return result
    

Supported Core Configurations

This library currently supports AWS Batch with Fargate compute environments. The number of cores must be one of the following values:

  • 1 core
  • 2 cores
  • 4 cores
  • 8 cores
  • 16 cores

Tips

  • Optimize your code for parallel execution.
  • Experiment with different cores values to balance performance.

Limitations

  • Serialization: Both the function and its data must be serializable (using Python’s pickle module). Use only serializable types:

    • Serializable: Integers, floats, strings, booleans, None, lists, tuples, dictionaries, and custom objects without non-serializable attributes.
    • Not Serializable: Nested/lambda functions, open file handles, database connections, or objects with non-serializable attributes.

    Test serialization example:

    import pickle
    
    try:
      pickle.dumps(your_function_or_data)
      print("Serializable!")
    except pickle.PickleError:
      print("Not serializable!")
    
  • Hardware Constraints: The decorator is for CPU-based tasks. For GPU tasks, consider dedicated GPU cloud services.

  • Internet Requirement: An active internet connection is needed during function execution.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts