Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

neural-sync

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

neural-sync

A library to standardize the usage of various machine learning models

  • 0.1.2
  • PyPI
  • Socket score

Maintainers
1

Neural_sync Library

Overview

The Neural_sync Library provides a unified interface for working with different machine learning models across various tasks. This library aims to standardize the way models are loaded, parameters are set, and results are generated, enabling a consistent approach regardless of the model type.

Supported Models

Text-to-Speech (TTS)

  • FastPitch & HiFi-GAN: Convert text to high-quality speech audio.

Speech-to-Text (STT)

  • Distil-Large-V2: Transcribe speech to text.
  • Openai/whisper-large-v3: Transcribe speech to text.
  • Nemo_asr: Transcribe speech to text.

Speaker Diarization

  • Pyannote 3.1: Identify and separate speakers in an audio file.

Voice Activity Detection (VAD)

  • Silero VAD: Detect speech segments in audio files.

Text-to-Image Generation

  • Stable Diffusion Medium-3: Generate images from text prompts.

Transformers-based Models

  • llama2, llama3, llama3_1
  • Mistralv2, Mistralv3
  • Phi3.5 Mini
  • AgentLM 7b

Quantized Models

  • LLaMA 2, LLaMA 3, LLaMA 3.1
  • Mistral v2, Mistral v3
  • Phi3.5 Mini
  • AgentLM 7b

Usage Examples

1. Transformers

Transformers models are versatile and can be used for various NLP tasks. Here's an example using the LLaMA 3 model

from parent.factory import ModelFactory
model = ModelFactory.get_model("llama3_1_8b_instruct")  # No need to specify model_path
params = ModelFactory.load_params_from_json('parameters.json')
model.set_params(**params)
response = model.generate(
     prompt="What is Artificial Intelligence?",
     system_prompt="Answer in German."
 )
print(response)

Similarly use following string for other models of transformers:

  • agentlm
  • Phi3_5
  • llama2
  • llama3_8b_instruct
  • llama3_1_8b_instruct
  • Mistralv2
  • Mistralv3

2. FastPitch (Text-to-Speech)

FastPitch is used for generating speech from text:

from parent.factory import ModelFactory
model = ModelFactory.get_model("fastpitch")

response = model.generate(text="Hello, this is Hasan Maqsood",output_path="Hasan.wav")

3. Voice Activity Detection (VAD)

Silero VAD is used for detecting speech timestamps in audio files:

from parent.factory import ModelFactory
model = ModelFactory.get_model("silero_vad")

response = model.generate("Youtube.wav")
print("Speech Timestamps:", response)

4. Speaker Diarization

Pyannote is used for speaker diarization:

from parent.factory import ModelFactory
model = ModelFactory.get_model("pyannote",use_auth_token="Enter Your authentication token")
response = model.generate("Hasan.wav", visualize =True)

5. Automatic Speech Recognition (Speech-To-Text)

Nemo ASR is used for transcribing audio to text:

from parent.factory import ModelFactory
model = ModelFactory.get_model("nemo_asr")
response = model.generate(audio_files=["Hasan.wav"])
print(response)

6. Distil/ Openai whsiper (Speech-To-Text)

Distil-whisper is used for transcribing audio to text:

from parent.factory import ModelFactory
model = ModelFactory.get_model("distil_whisper")
response = model.generate("Youtube.wav")
print("Transcription:", response)

Openai-whisper is also used for transcribing audio to text:

 from parent.factory import ModelFactory
 model = ModelFactory.get_model("openai_whisper")
 response = model.generate("Youtube.wav")
 print("Transcription:", response)

7. Text-to-Image Generation

Stable Diffusion is used for generating images from text prompts:

from parent.factory import ModelFactory
model = ModelFactory.get_model("sd_medium3")
response = model.generate(prompt ="House")
image_path = "new_house.png"
response.save(image_path)

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc