
Security News
Open Source CAI Framework Handles Pen Testing Tasks up to 3,600× Faster Than Humans
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Financial Technical Analysis Indicator Library. Python bindings for https://github.com/TulipCharts/tulipindicators
I forked the original repo to add support for 3.9.
It's on pip. Use pip install newtulipy
.
Tulipy requires numpy as all inputs and outputs are numpy arrays (dtype=np.float64
).
You can install via pip install newtulipy
.
If a wheel is not available for your system, you will need to pip install Cython numpy
to build from the source distribution.
When building from source on Windows, you will need the Microsoft Visual C++ Build Tools installed.
import numpy as np
import tulipy as ti
ti.TI_VERSION
'0.8.4'
DATA = np.array([81.59, 81.06, 82.87, 83, 83.61,
83.15, 82.84, 83.99, 84.55, 84.36,
85.53, 86.54, 86.89, 87.77, 87.29])
Information about indicators are exposed as properties:
def print_info(indicator):
print("Type:", indicator.type)
print("Full Name:", indicator.full_name)
print("Inputs:", indicator.inputs)
print("Options:", indicator.options)
print("Outputs:", indicator.outputs)
print_info(ti.sqrt)
Type: simple
Full Name: Vector Square Root
Inputs: ['real']
Options: []
Outputs: ['sqrt']
Single outputs are returned directly. Indicators returning multiple outputs use
a tuple in the order indicated by the outputs
property.
ti.sqrt(DATA)
array([ 9.03271831, 9.00333272, 9.10329611, 9.11043358, 9.14385039,
9.11866218, 9.1016482 , 9.16460583, 9.19510739, 9.18477 ,
9.24824308, 9.30268778, 9.32148057, 9.36856446, 9.34291175])
print_info(ti.sma)
Type: overlay
Full Name: Simple Moving Average
Inputs: ['real']
Options: ['period']
Outputs: ['sma']
ti.sma(DATA, period=5)
array([ 82.426, 82.738, 83.094, 83.318, 83.628, 83.778, 84.254,
84.994, 85.574, 86.218, 86.804])
Invalid options will throw an InvalidOptionError
:
try:
ti.sma(DATA, period=-5)
except ti.InvalidOptionError:
print("Invalid Option!")
Invalid Option!
print_info(ti.bbands)
Type: overlay
Full Name: Bollinger Bands
Inputs: ['real']
Options: ['period', 'stddev']
Outputs: ['bbands_lower', 'bbands_middle', 'bbands_upper']
ti.bbands(DATA, period=5, stddev=2)
(array([ 80.53004219, 80.98714192, 82.53334324, 82.47198345,
82.41775044, 82.43520292, 82.51133078, 83.14261781,
83.53648779, 83.8703237 , 85.28887096]),
array([ 82.426, 82.738, 83.094, 83.318, 83.628, 83.778, 84.254,
84.994, 85.574, 86.218, 86.804]),
array([ 84.32195781, 84.48885808, 83.65465676, 84.16401655,
84.83824956, 85.12079708, 85.99666922, 86.84538219,
87.61151221, 88.5656763 , 88.31912904]))
If inputs of differing sizes are provided, they are right-aligned and trimmed from the left:
DATA2 = np.array([83.15, 82.84, 83.99, 84.55, 84.36])
# 'high' trimmed to DATA[-5:] == array([ 85.53, 86.54, 86.89, 87.77, 87.29])
ti.aroonosc(high=DATA, low=DATA2, period=2)
array([ 50., 100., 50.])
FAQs
Financial Technical Analysis Indicator Library. Python bindings for https://github.com/TulipCharts/tulipindicators
We found that newtulipy demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Security News
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.
Security News
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.