Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Django Schema - Builds Pydantic Schemas from Django Models with default field type validations
Ninja Schema converts your Django ORM models to Pydantic schemas with more Pydantic features supported.
Inspired by: django-ninja and djantic
Starting version 0.13.4
, Ninja schema will support both v1 and v2 of pydantic library and will closely monitor V1 support on pydantic package.
Python >= 3.8 django >= 3 pydantic >= 1.6
Key features:
pip install ninja-schema
Checkout this sample project: https://github.com/eadwinCode/bookstoreapi
default: '__all__'
. Please note that when include = __all__
, model's PK becomes optionaldefault: set()
default: set()
optional = '__all__'
will make all schema fields optionaldefault: 0
model_validator(*args, **kwargs)
model_validator is a substitute for pydantic validator used for pre and post fields validation. There functionalities are the same. More info pydantic validators
from django.contrib.auth import get_user_model
from ninja_schema import ModelSchema, model_validator
UserModel = get_user_model()
class CreateUserSchema(ModelSchema):
class Config:
model = UserModel
include = ['username', 'email', 'password']
@model_validator('username')
def validate_unique_username(cls, value_data: str) -> str:
if UserModel.objects.filter(username__icontains=value_data).exists():
raise ValueError('Username exists')
return value_data
from_orm(cls, obj: Any)
You can generate a schema instance from your django model instance
from typings import Optional
from django.contrib.auth import get_user_model
from ninja_schema import ModelSchema, model_validator
UserModel = get_user_model()
new_user = UserModel.objects.create_user(
username='eadwin', email='eadwin@example.com',
password='password', first_name='Emeka', last_name='Okoro'
)
class UserSchema(ModelSchema):
class Config:
model = UserModel
include = ['id','first_name', 'last_name', 'username', 'email']
schema = UserSchema.from_orm(new_user)
print(schema.json(indent=2)
{
"id": 1,
"first_name": "Emeka",
"last_name": "Okoro",
"email": "eadwin@example.com",
"username": "eadwin",
}
apply(self, model_instance, **kwargs)
You can transfer data from your ModelSchema to Django Model instance using the apply
function.
The apply
function uses Pydantic model .dict
function, dict
function filtering that can be passed as kwargs
to the .apply
function.
For more info, visit Pydantic model export
from typings import Optional
from django.contrib.auth import get_user_model
from ninja_schema import ModelSchema, model_validator
UserModel = get_user_model()
new_user = UserModel.objects.create_user(username='eadwin', email='eadwin@example.com', password='password')
class UpdateUserSchema(ModelSchema):
class Config:
model = UserModel
include = ['first_name', 'last_name', 'username']
optional = ['username'] # `username` is now optional
schema = UpdateUserSchema(first_name='Emeka', last_name='Okoro')
schema.apply(new_user, exclude_none=True)
assert new_user.first_name == 'Emeka' # True
assert new_user.username == 'eadwin' # True
from django.contrib.auth import get_user_model
from ninja_schema import ModelSchema, model_validator
UserModel = get_user_model()
class UserSchema(ModelSchema):
class Config:
model = UserModel
include = '__all__'
depth = 2
print(UserSchema.schema())
{
"title": "UserSchema",
"type": "object",
"properties": {
"id": {"title": "Id", "extra": {}, "type": "integer"},
"password": {"title": "Password", "maxLength": 128, "type": "string"},
"last_login": {"title": "Last Login","type": "string", "format": "date-time"},
"is_superuser": {"title": "Superuser Status",
"description": "Designates that this user has all permissions without explicitly assigning them.",
"default": false,
"type": "boolean"
},
"username": {
"title": "Username",
"description": "Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.",
"maxLength": 150,
"type": "string"
},
"first_name": {
"title": "First Name",
"maxLength": 150,
"type": "string"
},
"last_name": {
"title": "Last Name",
"maxLength": 150,
"type": "string"
},
"email": {
"title": "Email Address",
"type": "string",
"format": "email"
},
"is_staff": {
"title": "Staff Status",
"description": "Designates whether the user can log into this admin site.",
"default": false,
"type": "boolean"
},
"is_active": {
"title": "Active",
"description": "Designates whether this user should be treated as active. Unselect this instead of deleting accounts.",
"default": true,
"type": "boolean"
},
"date_joined": {
"title": "Date Joined",
"type": "string",
"format": "date-time"
},
"groups": {
"title": "Groups",
"description": "The groups this user belongs to. A user will get all permissions granted to each of their groups.",
"type": "array",
"items": {
"$ref": "#/definitions/Group"
}
},
"user_permissions": {
"title": "User Permissions",
"description": "Specific permissions for this user.",
"type": "array",
"items": {
"$ref": "#/definitions/Permission"
}
}
},
"required": [
"password",
"username",
"groups",
"user_permissions"
],
"definitions": {
"Permission": {
"title": "Permission",
"type": "object",
"properties": {
"id": {
"title": "Id",
"extra": {},
"type": "integer"
},
"name": {
"title": "Name",
"maxLength": 255,
"type": "string"
},
"content_type_id": {
"title": "Content Type",
"type": "integer"
},
"codename": {
"title": "Codename",
"maxLength": 100,
"type": "string"
}
},
"required": [
"name",
"content_type_id",
"codename"
]
},
"Group": {
"title": "Group",
"type": "object",
"properties": {
"id": {
"title": "Id",
"extra": {},
"type": "integer"
},
"name": {
"title": "Name",
"maxLength": 150,
"type": "string"
},
"permissions": {
"title": "Permissions",
"type": "array",
"items": {
"$ref": "#/definitions/Permission"
}
}
},
"required": [
"name",
"permissions"
]
}
}
}
FAQs
Django Schema - Builds Pydantic Schemas from Django Models with default field type validations
We found that ninja-schema demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.