
Security News
Deno 2.6 + Socket: Supply Chain Defense In Your CLI
Deno 2.6 introduces deno audit with a new --socket flag that plugs directly into Socket to bring supply chain security checks into the Deno CLI.
nlp-preprocessing
Advanced tools
nlp-preprocessing provides text preprocessing functions i.e. text cleaning, dataset preprocessing, tokenization etc
pip install nlp_preprocessing
from nlp_preprocessing import clean
texts = ["Hi I am's nakdur"]
cleaned_texts = clean.clean_v1(texts)
There are multiple cleaning functions:
data_list = to_lower(data_list)
data_list = to_normalize(data_list)
data_list = remove_href(data_list)
data_list = remove_control_char(data_list)
data_list = remove_duplicate(data_list)
data_list = remove_underscore(data_list)
data_list = seperate_spam_chars(data_list)
data_list = seperate_brakets_quotes(data_list)
data_list = break_short_words(data_list)
data_list = break_long_words(data_list)
data_list = remove_ending_underscore(data_list)
data_list = remove_starting_underscore(data_list)
data_list = seperate_end_word_punctuations(data_list)
data_list = seperate_start_word_punctuations(data_list)
data_list = clean_contractions(data_list)
data_list = remove_s(data_list)
data_list = isolate_numbers(data_list)
data_list = regex_split_word(data_list)
data_list = leet_clean(data_list)
data_list = clean_open_holded_words(data_list)
data_list = clean_multiple_form(data_list)
from nlp_preprocessing import dataset as ds
import pandas as pd
text = ['I am Test 1','I am Test 2']
label = ['A','B']
aspect = ['C','D']
data = pd.DataFrame({'text':text*5,'label':label*5,'aspect':aspect*5})
data
data_config = {
'data_class':'multi-label',
'x_columns':['text'],
'y_columns':['label','aspect'],
'one_hot_encoded_columns':[],
'label_encoded_columns':['label','aspect'],
'data':data,
'split_ratio':0.1
}
dataset = ds.Dataset(data_config)
train, test = dataset.get_train_test_data()
print(train['Y_train'],train['X_train'])
print(test['Y_test'],test['X_test'])
print(dataset.data_config)
texts = ['I am Test 2', 'I am Test 1', 'I am Test 1', 'I am Test 1','I am Test 1', 'I am Test 2', 'I am Test 1', 'I am Test 2','I am Test 2']
tokens = seq_gen.get_word_sequences(texts)
print(tokens)
from nlp_preprocessing import token_embedding_creator
vector_file='../input/fasttext-crawl-300d-2m-with-subword/crawl-300d-2m-subword/crawl-300d-2M-subword.vec'
input_file='../input/complete-tweet-sentiment-extraction-data/tweet_dataset.csv'
column_name='text'
processor = token_embedding_creator.Processor(vector_file, input_file, column_name)
output_dir = '.'
special_tokens = ['[UNK]','[SEP]']
processor.process(output_dir, special_tokens)
#Loading vectors from ../input/fasttext-crawl-300d-2m-with-subword/crawl-300d-2m-subword/crawl-300d-2M-subword.vec type: index
#Writing vocab at ./full_vocab.txt
#1%| | 218/40000 [00:00<00:18, 2176.72it/s]
#Generating unique tokens ...
#100%|ââââââââââ| 40000/40000 [00:18<00:00, 2180.53it/s]
#Writing vocab at ./vocab.txt
#Loading vectors from ../input/fasttext-crawl-300d-2m-with-subword/crawl-300d-2m-subword/crawl-300d-2M-subword.vec type: embedding
#Writing vocab at ./vocab.txt
#Making Final Embedding ...
#Writing embedding at ./embeddings.npy
#Processing Done !
#Vocab stored at : ./vocab.txt of size: 25475
#Embedding stored at : ./embeddings.npy of shape: (25475, 300)
from nlp_preprocessing import seq_parser_token_generator
text = ['hi how are you']
pos_token, tag_token, dep_token = get_tokens(text[0])
pos_tokens, tag_tokens, dep_tokens = get_tokens_plus(text, 120)
FAQs
A Package for text preprocessing
We found that nlp-preprocessing demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Deno 2.6 introduces deno audit with a new --socket flag that plugs directly into Socket to bring supply chain security checks into the Deno CLI.

Security News
New DoS and source code exposure bugs in React Server Components and Next.js: whatâs affected and how to update safely.

Security News
Socket CEO Feross Aboukhadijeh joins Software Engineering Daily to discuss modern software supply chain attacks and rising AI-driven security risks.