Albert Word Embeddings with NLU | albert , sentiment pos albert emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Albert-Paper, Albert on Github, Albert on TensorFlow, T-SNE, T-SNE-Albert, Albert_Embedding |
Bert Word Embeddings with NLU | bert , pos sentiment emotion bert | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bert-Paper, Bert Github, T-SNE, T-SNE-Bert, Bert_Embedding |
BIOBERT Word Embeddings with NLU | biobert , sentiment pos biobert emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | BioBert-Paper, Bert Github , BERT: Deep Bidirectional Transformers, Bert Github, T-SNE, T-SNE-Biobert, Biobert_Embedding |
COVIDBERT Word Embeddings with NLU | covidbert , sentiment covidbert pos | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | CovidBert-Paper, Bert Github, T-SNE, T-SNE-CovidBert, Covidbert_Embedding |
ELECTRA Word Embeddings with NLU | electra , sentiment pos en.embed.electra emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Electra-Paper, T-SNE, T-SNE-Electra, Electra_Embedding |
ELMO Word Embeddings with NLU | elmo , sentiment pos elmo emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | ELMO-Paper, Elmo-TensorFlow, T-SNE, T-SNE-Elmo, Elmo-Embedding |
GLOVE Word Embeddings with NLU | glove , sentiment pos glove emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Glove-Paper, T-SNE, T-SNE-Glove , Glove_Embedding |
XLNET Word Embeddings with NLU | xlnet , sentiment pos xlnet emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | XLNet-Paper, Bert Github, T-SNE, T-SNE-XLNet, Xlnet_Embedding |
Multiple Word-Embeddings and Part of Speech in 1 Line of code | bert electra elmo glove xlnet albert pos | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bert-Paper, Albert-Paper, ELMO-Paper, Electra-Paper, XLNet-Paper, Glove-Paper |
Normalzing with NLU | norm | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Detect sentences with NLU | sentence_detector.deep , sentence_detector.pragmatic , xx.sentence_detector | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Sentence Detector |
Spellchecking with NLU | n.a. | n.a. | - |
Stemming with NLU | en.stem , de.stem | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Stopwords removal with NLU | stopwords | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Stopwords |
Tokenization with NLU | tokenize | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Normalization of Documents | norm_document | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Open and Closed book question answering with Google's T5 | en.t5 , answer_question | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | T5-Paper, T5-Model |
Overview of every task available with T5 | en.t5.base | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | T5-Paper, T5-Model |
Translate between more than 200 Languages in 1 line of code with Marian Models | tr.translate_to.fr , en.translate_to.fr ,fr.translate_to.he , en.translate_to.de | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Marian-Papers, Translation-Pipeline (En to Fr), Translation-Pipeline (En to Ger) |
BERT Sentence Embeddings with NLU | embed_sentence.bert , pos sentiment embed_sentence.bert | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bert-Paper, Bert Github, Bert-Sentence_Embedding |
ELECTRA Sentence Embeddings with NLU | embed_sentence.electra , pos sentiment embed_sentence.electra | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Electra Paper, Sentence-Electra-Embedding |
USE Sentence Embeddings with NLU | use , pos sentiment use emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Universal Sentence Encoder, USE-TensorFlow, Sentence-USE-Embedding |
Sentence similarity with NLU using BERT embeddings | embed_sentence.bert , use en.embed_sentence.electra embed_sentence.bert | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bert-Paper, Bert Github, Bert-Sentence_Embedding |
Part of Speech tagging with NLU | pos | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Part of Speech |
NER Aspect Airline ATIS | en.ner.aspect.airline | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | NER Airline Model, Atis intent Dataset |
NLU-NER_CONLL_2003_5class_example | ner | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | NER-Piple |
Named-entity recognition with Deep Learning ONTO NOTES | ner.onto | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | NER_Onto |
Aspect based NER-Sentiment-Restaurants | en.ner.aspect_sentiment | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Detect Named Entities (NER), Part of Speech Tags (POS) and Tokenize in Chinese | zh.segment_words , zh.pos , zh.ner , zh.translate_to.en | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Translation-Pipeline (Zh to En) |
Detect Named Entities (NER), Part of Speech Tags (POS) and Tokenize in Japanese | ja.segment_words , ja.pos , ja.ner , ja.translate_to.en | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Translation-Pipeline (Ja to En) |
Detect Named Entities (NER), Part of Speech Tags (POS) and Tokenize in Korean | ko.segment_words , ko.pos , ko.ner.kmou.glove_840B_300d , ko.translate_to.en | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Date Matching | match.datetime | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Typed Dependency Parsing with NLU | dep | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Dependency Parsing |
Untyped Dependency Parsing with NLU | dep.untyped | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
E2E Classification with NLU | e2e | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | e2e-Model |
Language Classification with NLU | lang | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Cyberbullying Classification with NLU | classify.cyberbullying | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Cyberbullying-Classifier |
Sentiment Classification with NLU for Twitter | emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Emotion detection |
Fake News Classification with NLU | en.classify.fakenews | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Fakenews-Classifier |
Intent Classification with NLU | en.classify.intent.airline | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Airline-Intention classifier, Atis-Dataset |
Question classification based on the TREC dataset | en.classify.questions | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Question-Classifier |
Sarcasm Classification with NLU | en.classify.sarcasm | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Sarcasm-Classifier |
Sentiment Classification with NLU for Twitter | en.sentiment.twitter | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Sentiment_Twitter-Classifier |
Sentiment Classification with NLU for Movies | en.sentiment.imdb | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Sentiment_imdb-Classifier |
Spam Classification with NLU | en.classify.spam | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Spam-Classifier |
Toxic text classification with NLU | en.classify.toxic | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Toxic-Classifier |
Unsupervised keyword extraction with NLU using the YAKE algorithm | yake | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Grammatical Chunk Matching with NLU | match.chunks | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Getting n-Grams with NLU | ngram | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Assertion | en.med_ner.clinical en.assert , en.med_ner.clinical.biobert en.assert.biobert , ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Healthcare-NER, NER_Clinical-Classifier, Toxic-Classifier |
De-Identification Model overview | med_ner.jsl.wip.clinical en.de_identify , med_ner.jsl.wip.clinical en.de_identify.clinical , ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | NER-Clinical |
Drug Normalization | norm_drugs | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Entity Resolution | med_ner.jsl.wip.clinical en.resolve_chunk.cpt_clinical , med_ner.jsl.wip.clinical en.resolve.icd10cm , ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | NER-Clinical, Entity-Resolver clinical |
Medical Named Entity Recognition | en.med_ner.ade.clinical , en.med_ner.ade.clinical_bert , en.med_ner.anatomy ,en.med_ner.anatomy.biobert , ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Relation Extraction | en.med_ner.jsl.wip.clinical.greedy en.relation , en.med_ner.jsl.wip.clinical.greedy en.relation.bodypart.problem , ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Visualization of NLP-Models with Spark-NLP and NLU | ner , dep.typed , med_ner.jsl.wip.clinical resolve_chunk.rxnorm.in , med_ner.jsl.wip.clinical resolve.icd10cm | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | NER-Piple, Dependency Parsing, NER-Clinical, Entity-Resolver (Chunks) clinical |
NLU Covid-19 Emotion Showcase | emotion | ![Open In GitHub]() | Emotion detection |
NLU Covid-19 Sentiment Showcase | sentiment | ![Open In GitHub]() | Sentiment classification |
NLU Airline Emotion Demo | emotion | ![Open In GitHub]() | Emotion detection |
NLU Airline Sentiment Demo | sentiment | ![Open In GitHub]() | Sentiment classification |
Bengali NER Hindi Embeddings for 30 Models | bn.ner , bn.lemma , ja.lemma , am.lemma , bh.lemma , en.ner.onto.bert.small_l2_128 ,.. | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bengali-NER, Bengali-Lemmatizer, Japanese-Lemmatizer, Amharic-Lemmatizer |
Entity Resolution | med_ner.jsl.wip.clinical en.resolve.umls , med_ner.jsl.wip.clinical en.resolve.loinc , med_ner.jsl.wip.clinical en.resolve.loinc.biobert | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
NLU 20 Minutes Crashcourse - the fast Data Science route | spell , sentiment , pos , ner , yake , en.t5 , emotion , answer_question , en.t5.base ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | T5-Model, Part of Speech, NER-Piple, Emotion detection , Spellchecker, Sentiment classification |
Chapter 0: Intro: 1-liners | sentiment , pos , ner , bert , elmo , embed_sentence.bert | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Part of Speech, NER-Piple, Sentiment classification, Elmo-Embedding, Bert-Sentence_Embedding |
Chapter 1: NLU base-features with some classifiers on testdata | emotion , yake , stem | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Emotion detection |
Chapter 2: Translation between 300+ languages with Marian | tr.translate_to.en , en.translate_to.fr , en.translate_to.he | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Translation-Pipeline (En to Fr), Translation (En to He) |
Chapter 3: Answer questions and summarize Texts with T5 | answer_question , en.t5 , en.t5.base | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | T5-Model |
Chapter 4: Overview of T5-Tasks | en.t5.base | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | T5-Model |
Graph NLU 20 Minutes Crashcourse - State of the Art Text Mining for Graphs | spell , sentiment , pos , ner , yake , emotion , med_ner.jsl.wip.clinical , ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Part of Speech, NER-Piple, Emotion detection, Spellchecker, Sentiment classification |
Healthcare with NLU | med_ner.human_phenotype.gene_biobert , med_ner.ade_biobert , med_ner.anatomy , med_ner.bacterial_species ,... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |
Part 0: Intro: 1-liners | spell , sentiment , pos , ner , bert , elmo , embed_sentence.bert | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bert-Paper, Bert Github, T-SNE, T-SNE-Bert , Part of Speech, NER-Piple, Spellchecker, Sentiment classification, Elmo-Embedding , Bert-Sentence_Embedding |
Part 1: NLU base-features with some classifiers on Testdata | yake , stem , ner , emotion | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | NER-Piple, Emotion detection |
Part 2: Translate between 200+ Languages in 1 line of code with Marian-Models | en.translate_to.de , en.translate_to.fr , en.translate_to.he | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Translation-Pipeline (En to Fr), Translation-Pipeline (En to Ger), Translation (En to He) |
Part 3: More Multilingual NLP-translations for Asian Languages with Marian | en.translate_to.hi , en.translate_to.ru , en.translate_to.zh | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Translation (En to Hi), Translation (En to Ru), Translation (En to Zh) |
Part 4: Unsupervise Chinese Keyword Extraction, NER and Translation from chinese news | zh.translate_to.en , zh.segment_words , yake , zh.lemma , zh.ner | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Translation-Pipeline (Zh to En), Zh-Lemmatizer |
Part 5: Multilingual sentiment classifier training for 100+ languages | train.sentiment , xx.embed_sentence.labse train.sentiment | n.a. | Sentence_Embedding.Labse |
Part 6: Question-answering and Text-summarization with T5-Modell | answer_question , en.t5 , en.t5.base | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | T5-Paper |
Part 7: Overview of all tasks available with T5 | en.t5.base | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | T5-Paper |
Part 8: Overview of some of the Multilingual modes with State Of the Art accuracy (1-liner) | bn.lemma , ja.lemma , am.lemma , bh.lemma , zh.segment_words , ... | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bengali-Lemmatizer, Japanese-Lemmatizer , Amharic-Lemmatizer |
Overview of some Multilingual modes avaiable with State Of the Art accuracy (1-liner) | bn.ner.cc_300d , ja.ner , zh.ner , th.ner.lst20.glove_840B_300D , ar.ner | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | Bengali-NER |
NLU 20 Minutes Crashcourse - the fast Data Science route | - | ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) | - |