================
Numpy Structures
.. image:: https://img.shields.io/pypi/v/npstructures.svg
:target: https://pypi.python.org/pypi/npstructures
.. image:: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml/badge.svg
:target: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml
.. image:: https://readthedocs.org/projects/npstructures/badge/?version=latest
:target: https://npstructures.readthedocs.io/en/latest/?version=latest
:alt: Documentation Status
Simple data structures that augments the numpy library
Features
The main feature is the RaggedArray
class which enables numpy
-like behaviour and performance for arrays where
the length of the rows differ.
RaggedArray
is meant as a drop-in replacement for numpy
when you have arrays with differing row lengths.
As such, familiarity with numpy
is assumed. The simplest way to construct a RaggedArray
is from a list of lists::
>>> from npstructures import RaggedArray
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
A RaggedArray
can be indexed much like a numpy
array::
>>> ra[1]
array([4, 1, 3, 7])
>>> ra[1, 3]
7
>>> ra[1:3]
RaggedArray([[4, 1, 3, 7], [9]])
>>> ra[[0, 3]]
RaggedArray([[1, 2], [8, 7, 3, 4]])
>>> ra[0] = [0, 0]
>>> ra
RaggedArray([[0, 0], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> ra[1:3] = [[10], [20]]
>>> ra
RaggedArray([[0, 0], [10, 10, 10, 10], [20], [8, 7, 3, 4]])
>>> ra[[0, 2, 3]] = RaggedArray([[2, 2], [3], [5, 5, 5, 5]])
>>> ra
RaggedArray([[2, 2], [10, 10, 10, 10], [3], [5, 5, 5, 5]])
numpy ufuncs
can be applied to RaggedArray
objects::
>>> ra + 1
RaggedArray([[2, 3], [5, 2, 4, 8], [10], [9, 8, 4, 5]])
>>> ra*2
RaggedArray([[2, 4], [8, 2, 6, 14], [18], [16, 14, 6, 8]])
>>> ra + [[1], [10], [100], [1000]]
RaggedArray([[2, 3], [14, 11, 13, 17], [109], [1008, 1007, 1003, 1004]])
>>> ra - (ra*2)
RaggedArray([[-1, -2], [-4, -1, -3, -7], [-9], [-8, -7, -3, -4]])
Some numpy
functions can be applied to RaggedArray
objects::
>>> import numpy as np
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> np.concatenate((ra, ra*10))
RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4], [10, 20], [40, 10, 30, 70], [90], [80, 70, 30, 40]])
>>> np.nonzero(ra>3)
(array([1, 1, 2, 3, 3, 3]), array([0, 3, 0, 0, 1, 3]))
>>> np.ones_like(ra)
RaggedArray([[1, 1], [1, 1, 1, 1], [1], [1, 1, 1, 1]])
In addition to this. HashTable
and Counter
provides simple dict
-like behaviour for numpy
arrays:
HashTable
can be used for dict
-like functionality of numpy
arrays. The simplest way to construct a HashTable
is from an array of keys and an array of values (note that the set of keys cannot be modified after the initialization of the object)::
>>> table = HashTable([11, 113, 1191, 11199], [2, 3, 5, 7])
>>> table[11]
array([2])
>>> table[[113, 11199]]
array([3, 7])
>>> table[11]=1000
>>> table
HashTable([ 113 1191 11 11199], [ 3 5 1000 7])
>>> table[[113, 1191]]=2000
>>> table
HashTable([ 113 1191 11 11199], [2000 2000 1000 7])
>>> table[[113, 1191, 11, 11191]] = [1, 2, 3, 4]
>>> table[[113, 1191, 11, 11199]] = [1, 2, 3, 4]
>>> table
HashTable([ 113 1191 11 11199], [1 2 3 4])
Counter
objects supports counting the occurances of a predefined set of keys in a set of samples. For instance, to count the occurances of 3
and 1
in the list [3, 2, 1, 3, 4, 1, 1]
::
>>> from npstructures import Counter
>>> counter = Counter([3, 1])
>>> counter.count([3, 2, 1, 3, 4, 1, 1])
>>> counter
Counter([3 1], [2 3])
Credits
This package was created with Cookiecutter_ and the audreyr/cookiecutter-pypackage
_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _audreyr/cookiecutter-pypackage
: https://github.com/audreyr/cookiecutter-pypackage
=======
History
0.2.0 (2022-06-17)
- Tested indexing, ufuncs and arrayfunctions with hypothesis
0.1.0 (2021-12-27)