###################################################################################
cuSPARSELt: A High-Performance CUDA Library for Sparse Matrix-Matrix Multiplication
###################################################################################
NVIDIA cuSPARSELt is a high-performance CUDA library dedicated to general matrix-matrix operations in which at least one operand is a sparse matrix:
.. math::
D = Activation(\alpha op(A) \cdot op(B) + \beta op(C) + bias) \cdot scale
where :math:op(A)/op(B)
refers to in-place operations such as transpose/non-transpose, and :math:alpha, beta, scale
are scalars.
The cuSPARSELt APIs allow flexibility in the algorithm/operation selection, epilogue, and matrix characteristics, including memory layout, alignment, and data types.
Download: developer.nvidia.com/cusparselt/downloads <https://developer.nvidia.com/cusparselt/downloads>
_
Provide Feedback: Math-Libs-Feedback@nvidia.com <mailto:Math-Libs-Feedback@nvidia.com?subject=cuSPARSELt-Feedback>
_
Examples:
cuSPARSELt Example 1 <https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSPARSELt/matmul>
,
cuSPARSELt Example 2 <https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSPARSELt/matmul_advanced>
Blog post:
Exploiting NVIDIA Ampere Structured Sparsity with cuSPARSELt <https://developer.nvidia.com/blog/exploiting-ampere-structured-sparsity-with-cusparselt/>
_Structured Sparsity in the NVIDIA Ampere Architecture and Applications in Search Engines <https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/>
__Making the Most of Structured Sparsity in the NVIDIA Ampere Architecture <https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31552/>
__
================================================================================
Key Features
-
NVIDIA Sparse MMA tensor core support
-
Mixed-precision computation support:
+--------------+----------------+-----------------+-------------+
| Input A/B | Input C | Output D | Compute |
+==============+================+=================+=============+
| FP32
| FP32
| FP32
| FP32
|
+--------------+----------------+-----------------+-------------+
| FP16
| FP16
| FP16
| FP32
|
| | | | FP16
|
+--------------+----------------+-----------------+-------------+
| BF16
| BF16
| BF16
| FP32
|
+--------------+----------------+-----------------+-------------+
| INT8
| INT8
| INT8
| INT32
|
| | INT32
| INT32
| |
| | FP16
| FP16
| |
| | BF16
| BF16
| |
+--------------+----------------+-----------------+-------------+
| E4M3
| FP16
| E4M3
| FP32
|
| | BF16
| E4M3
| |
| | FP16
| FP16
| |
| | BF16
| BF16
| |
| | FP32
| FP32
| |
+--------------+----------------+-----------------+-------------+
| E5M2
| FP16
| E5M2
| FP32
|
| | BF16
| E5M2
| |
| | FP16
| FP16
| |
| | BF16
| BF16
| |
| | FP32
| FP32
| |
+--------------+----------------+-----------------+-------------+
-
Matrix pruning and compression functionalities
-
Activation functions, bias vector, and output scaling
-
Batched computation (multiple matrices in a single run)
-
GEMM Split-K mode
-
Auto-tuning functionality (see cusparseLtMatmulSearch()
)
-
NVTX ranging and Logging functionalities
================================================================================
Support
- Supported SM Architectures:
SM 8.0
, SM 8.6
, SM 8.9
, SM 9.0
, SM 10.0
, SM 12.0
- Supported CPU architectures and operating systems:
+------------+--------------------+
| OS | CPU archs |
+============+====================+
| Windows
| x86_64
|
+------------+--------------------+
| Linux
| x86_64
, Arm64
|
+------------+--------------------+
================================================================================
Documentation
Please refer to https://docs.nvidia.com/cuda/cusparselt/index.html for the cuSPARSELt documentation.
================================================================================
Installation
The cuSPARSELt wheel can be installed as follows:
.. code-block:: bash
pip install nvidia-cusparselt-cuXX
where XX is the CUDA major version (currently CUDA 12 only is supported).