You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

oauth-mcp

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

oauth-mcp

A Python SDK for MCP tool integration with LLM providers

0.0.2
pipPyPI
Maintainers
1

Observee Agents

A Python SDK for seamless integration of MCP (Model Context Protocol) tools with multiple LLM providers including Anthropic Claude, OpenAI GPT, and Google Gemini.

Configure as many MCP servers/tools as you need at observee.ai

Features

  • 🤖 Multi-Provider Support: Works with Anthropic, OpenAI, and Gemini
  • 🔧 Smart Tool Filtering: BM25, local embeddings, and cloud-based filtering
  • Fast Performance: Intelligent caching and optimization
  • 🔑 Flexible Authentication: URL-based or API key authentication
  • 🔐 OAuth Integration: Built-in authentication flows for Gmail, Slack, Notion, and 15+ services
  • 🎯 Easy Integration: Simple sync/async API
  • 📡 Streaming Support: Real-time streaming responses for Anthropic, OpenAI, and Gemini
  • 📦 Pip Installable: Easy installation and distribution

Installation

# Basic installation
pip install observee-agents

# With optional dependencies
pip install observee-agents[embedding,cloud]

# Development installation
pip install observee-agents[dev]

Quick Start

from observee_agents import chat_with_tools

result = chat_with_tools(
    message="Search for recent news about AI developments",
    provider="anthropic",
    model="claude-sonnet-4-20250514",
    observee_api_key="obs_your_key_here"
)

print("Response:", result["content"])
print("Tools used:", len(result["tool_calls"]))

Explore Available Tools

from observee_agents import list_tools, get_tool_info, filter_tools

# List all available tools
tools = list_tools(observee_api_key="obs_your_key_here")
print(f"Found {len(tools)} tools:")
for tool in tools[:5]:  # Show first 5
    print(f"- {tool['name']}: {tool['description']}")

# Get detailed info about a specific tool
tool_info = get_tool_info(
    tool_name="youtube_get_transcript",
    observee_api_key="obs_your_key_here"
)
if tool_info:
    print(f"Tool: {tool_info['name']}")
    print(f"Description: {tool_info['description']}")

# Find relevant tools for a task
relevant_tools = filter_tools(
    query="search YouTube videos",
    max_tools=3,
    observee_api_key="obs_your_key_here"
)
for tool in relevant_tools:
    print(f"- {tool['name']} (relevance: {tool['relevance_score']})")

Execute Tools Directly

from observee_agents import execute_tool

# Execute a tool directly without LLM
result = execute_tool(
    tool_name="youtube_get_transcript", 
    tool_input={"video_url": "https://youtube.com/watch?v=dQw4w9WgXcQ"},
    observee_api_key="obs_your_key_here"
)
print(result)

Streaming Responses

import asyncio
from observee_agents import chat_with_tools_stream

async def stream_example():
    async for chunk in chat_with_tools_stream(
        message="What's the weather like today?",
        provider="openai",
        observee_api_key="obs_your_key_here"
    ):
        if chunk["type"] == "content":
            print(chunk["content"], end="", flush=True)
        elif chunk["type"] == "tool_result":
            print(f"\n[Tool executed: {chunk['tool_name']}]")

asyncio.run(stream_example())

Advanced Async Usage

import asyncio
from observee_agents import MCPAgent

async def advanced_example():
    async with MCPAgent(
        provider="anthropic",
        server_url="wss://mcp.observee.ai/mcp?client_id=your_id",
        auth_token="obs_your_key_here"
    ) as agent:
        result = await agent.chat_with_tools(
            message="What tools do you have access to?"
        )
        return result

result = asyncio.run(advanced_example())
print(result["content"])

OAuth Authentication

The SDK includes built-in OAuth flows for authenticating with various services:

from observee_agents import call_mcpauth_login, get_available_servers

# Get list of supported authentication servers
servers = get_available_servers()
print(f"Available servers: {servers['supported_servers']}")

# Start authentication flow for Gmail
response = call_mcpauth_login(auth_server="gmail")
print(f"Visit this URL to authenticate: {response['url']}")

# Start authentication flow for Slack with client ID
response = call_mcpauth_login(
    auth_server="slack"
)

Supported Services: Gmail, Google Calendar, Google Docs, Google Drive, Google Sheets, Slack, Notion, Linear, Asana, Outlook, OneDrive, Atlassian, Supabase, Airtable, Discord, and more.

Configuration

Environment Variables

# Option 1: API Key (Recommended)
export OBSERVEE_API_KEY="obs_your_key_here"
export OBSERVEE_CLIENT_ID="your_client_id"  # Optional

# Option 2: Direct URL
export OBSERVEE_URL="https://mcp.observee.ai/mcp"

# LLM Provider Keys
export ANTHROPIC_API_KEY="your_anthropic_key"
export OPENAI_API_KEY="your_openai_key" 
export GOOGLE_API_KEY="your_google_key"

Function Parameters

from observee_agents import chat_with_tools

result = chat_with_tools(
    message="Your query here",
    
    # Provider Configuration
    provider="anthropic",  # "anthropic", "openai", "gemini"
    model="claude-sonnet-4-20250514",  # Auto-detected if not provided
    
    # Authentication (priority: params > env vars)
    observee_api_key="obs_your_key",
    observee_url="https://custom.mcp.server/endpoint",
    client_id="your_client_id",
    
    # Tool Filtering
    enable_filtering=True,  # True for filtered tools, False for all tools
    filter_type="bm25",     # "bm25", "local_embedding", "cloud"
    max_tools=20,           # Maximum tools to filter
    min_score=8.0,          # Minimum relevance score
    
    # Performance
    sync_tools=False,       # True to clear caches and resync
    
    # Provider-specific args
    temperature=0.7,
    max_tokens=1000
)

Examples

Available Imports

# Main chat functionality
from observee_agents import chat_with_tools, chat_with_tools_stream

# Tool exploration and management
from observee_agents import list_tools, get_tool_info, filter_tools, execute_tool

# Advanced usage
from observee_agents import MCPAgent

Multiple Providers

from observee_agents import chat_with_tools

# Anthropic Claude
result = chat_with_tools(
    message="Analyze this YouTube video",
    provider="anthropic",
    model="claude-sonnet-4-20250514"
)

# OpenAI GPT
result = chat_with_tools(
    message="Search for recent AI papers", 
    provider="openai",
    model="gpt-4o"
)

# Google Gemini
result = chat_with_tools(
    message="Help me manage my emails",
    provider="gemini", 
    model="gemini-2.5-pro"
)

Tool Filtering Options

from observee_agents import chat_with_tools

# Fast BM25 keyword filtering (default)
result = chat_with_tools(
    message="Find relevant tools",
    filter_type="bm25",
    max_tools=5
)

# Semantic embedding filtering
result = chat_with_tools(
    message="Find relevant tools",
    filter_type="local_embedding",
    max_tools=10
)

# Cloud hybrid search (requires API keys)
result = chat_with_tools(
    message="Find relevant tools",
    filter_type="cloud",
    max_tools=15
)

# No filtering - use all available tools
result = chat_with_tools(
    message="What can you do?",
    enable_filtering=False
)

Custom Configuration

from observee_agents import chat_with_tools

# Custom Observee server
result = chat_with_tools(
    message="Custom server query",
    observee_url="https://your-custom-server.com/mcp",
    client_id="custom_client_123"
)

# Force cache refresh
result = chat_with_tools(
    message="Get fresh results", 
    sync_tools=True  # Clears caches
)

Response Format

{
    "content": "The AI response text",
    "tool_calls": [
        {
            "name": "tool_name",
            "input": {"param": "value"}
        }
    ],
    "tool_results": [
        {
            "tool": "tool_name", 
            "result": "tool output"
        }
    ],
    "filtered_tools_count": 5,
    "filtered_tools": ["tool1", "tool2", "tool3"],
    "used_filtering": True
}

Available Tools

The SDK provides access to various MCP tools including:

  • 📧 Gmail: Email management, search, compose, labels
  • 🎥 YouTube: Video transcript retrieval and analysis
  • 📋 Linear: Project management, issues, comments
  • 🔍 Brave Search: Web search and local business lookup
  • And many more...

Filter Types

BM25 Filter (Default)

  • Speed: ⚡ ~1-5ms per query
  • Best for: Fast keyword matching, production use
  • Dependencies: None (built-in)

Local Embedding Filter

  • Speed: ⚡ ~10ms per query
  • Best for: Semantic search without cloud dependencies
  • Dependencies: fastembed

Cloud Filter

  • Speed: 🐌 ~300-400ms per query
  • Best for: Highest quality hybrid search
  • Dependencies: pinecone-client, openai
  • Requirements: PINECONE_API_KEY, OPENAI_API_KEY

Development

# Clone and install in development mode
git clone https://github.com/observee-ai/mcp-agent-system.git #coming soon
cd mcp-agent-system
pip install -e .[dev]

# Run tests
pytest

# Format code
black observee_agents/

License

All rights reserved. This software is proprietary and confidential. Unauthorized copying, distribution, or use is strictly prohibited.

Support

Keywords

mcp

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts