onnx2torch is an ONNX to PyTorch converter.
Our converter:
- Is easy to use – Convert the ONNX model with the function call
convert
; - Is easy to extend – Write your own custom layer in PyTorch and register it with
@add_converter
; - Convert back to ONNX – You can convert the model back to ONNX using the
torch.onnx.export
function.
If you find an issue, please let us know!
And feel free to create merge requests.
Please note that this converter covers only a limited number of PyTorch / ONNX models and operations.
Let us know which models you use or want to convert from ONNX to PyTorch here.
Installation
pip install onnx2torch
or
conda install -c conda-forge onnx2torch
Usage
Below you can find some examples of use.
Convert
import onnx
import torch
from onnx2torch import convert
onnx_model_path = "/some/path/mobile_net_v2.onnx"
torch_model_1 = convert(onnx_model_path)
onnx_model = onnx.load(onnx_model_path)
torch_model_2 = convert(onnx_model)
Execute
We can execute the returned PyTorch model
in the same way as the original torch model.
import onnxruntime as ort
x = torch.ones((1, 2, 224, 224)).cuda()
out_torch = torch_model_1(x)
ort_sess = ort.InferenceSession(onnx_model_path)
outputs_ort = ort_sess.run(None, {"input": x.numpy()})
print(torch.max(torch.abs(outputs_ort - out_torch.detach().numpy())))
print(np.allclose(outputs_ort, out_torch.detach().numpy(), atol=1.0e-7))
Models
We have tested the following models:
Segmentation models:
Detection from MMdetection:
Classification from TorchVision:
Transformers:
:page_facing_up: List of currently supported operations can be founded here.
How to add new operations to converter
Here we show how to extend onnx2torch with new ONNX operation, that supported by both PyTorch and ONNX
and has the same behaviour
An example of such a module is Relu
@add_converter(operation_type="Relu", version=6)
@add_converter(operation_type="Relu", version=13)
@add_converter(operation_type="Relu", version=14)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
return OperationConverterResult(
torch_module=nn.ReLU(),
onnx_mapping=onnx_mapping_from_node(node=node),
)
Here we have registered an operation named Relu
for opset versions 6, 13, 14.
Note that the torch_module
argument in OperationConverterResult
must be a torch.nn.Module, not just a callable object!
If Operation's behaviour differs from one opset version to another, you should implement it separately.
but has different behaviour
An example of such a module is ScatterND
class ReductionOnnxAttr(Enum):
NONE = "none"
ADD = "add"
MUL = "mul"
class OnnxScatterND(nn.Module, OnnxToTorchModuleWithCustomExport):
def __init__(self, reduction: ReductionOnnxAttr):
super().__init__()
self._reduction = reduction
def _onnx_attrs(self, opset_version: int) -> Dict[str, Any]:
onnx_attrs: Dict[str, Any] = {}
if opset_version < 16:
if self._reduction != ReductionOnnxAttr.NONE:
raise ValueError(
"ScatterND from opset < 16 does not support"
f"reduction attribute != {ReductionOnnxAttr.NONE.value},"
f"got {self._reduction.value}"
)
return onnx_attrs
onnx_attrs["reduction_s"] = self._reduction.value
return onnx_attrs
def forward(
self,
data: torch.Tensor,
indices: torch.Tensor,
updates: torch.Tensor,
) -> torch.Tensor:
def _forward():
return output
if torch.onnx.is_in_onnx_export():
onnx_attrs = self._onnx_attrs(opset_version=get_onnx_version())
return DefaultExportToOnnx.export(
_forward, "ScatterND", data, indices, updates, onnx_attrs
)
return _forward()
@add_converter(operation_type="ScatterND", version=11)
@add_converter(operation_type="ScatterND", version=13)
@add_converter(operation_type="ScatterND", version=16)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
node_attributes = node.attributes
reduction = ReductionOnnxAttr(node_attributes.get("reduction", "none"))
return OperationConverterResult(
torch_module=OnnxScatterND(reduction=reduction),
onnx_mapping=onnx_mapping_from_node(node=node),
)
Here we have used a trick to convert the model from torch back to ONNX by defining the custom _ScatterNDExportToOnnx
.
Opset version workaround
Incase you are using a model with older opset, try the following workaround:
ONNX Version Conversion - Official Docs
Example
import onnx
from onnx import version_converter
import torch
from onnx2torch import convert
model = onnx.load("model.onnx")
target_version = 13
converted_model = version_converter.convert_version(model, target_version)
torch_model = convert(converted_model)
torch.save(torch_model, "model.pt")
Note: use this only when the model does not convert to PyTorch using the existing opset version. Result might vary.
Citation
To cite onnx2torch use Cite this repository
button, or:
@misc{onnx2torch,
title={onnx2torch},
author={ENOT developers and Kalgin, Igor and Yanchenko, Arseny and Ivanov, Pyoter and Goncharenko, Alexander},
year={2021},
howpublished={\url{https://enot.ai/}},
note={Version: x.y.z}
}
Acknowledgments
Thanks to Dmitry Chudakov @cakeofwar42 for his contributions.
Special thanks to Andrey Denisov @denisovap2013 for the logo design.