
Security News
Browserslist-rs Gets Major Refactor, Cutting Binary Size by Over 1MB
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
This repository is intended as a faster drop-in replacement for Pytorch's Torchvision augmentations. This repo uses OpenCV for fast image augmentation for PyTorch computer vision pipelines. I wrote this code because the Pillow-based Torchvision transforms was starving my GPU due to slow image augmentation.
num_workers >0
in a pytorch DataLoader
. I haven't run into this issue yet.opencv_transforms is now a pip package! Simply use
pip install opencv_transforms
Breaking change! Please note the import syntax!
from opencv_transforms import transforms
transforms
.import numpy as np
image = np.random.randint(low=0, high=255, size=(1024, 2048, 3))
resize = transforms.Resize(size=(256,256))
image = resize(image)
Should be 1.5 to 10 times faster than PIL. See benchmarks
The changes start to add up when you compose multiple transformations together.
resample
flag on RandomRotation
, RandomAffine
actually do somethingFAQs
A drop-in replacement for Torchvision Transforms using OpenCV
We found that opencv-transforms demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
Research
Security News
Eight new malicious Firefox extensions impersonate games, steal OAuth tokens, hijack sessions, and exploit browser permissions to spy on users.
Security News
The official Go SDK for the Model Context Protocol is in development, with a stable, production-ready release expected by August 2025.