MIM: MIM Installs OpenMMLab Packages
MIM provides a unified interface for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.
Major Features
-
Package Management
You can use MIM to manage OpenMMLab codebases, install or uninstall them conveniently.
-
Model Management
You can use MIM to manage OpenMMLab model zoo, e.g., download checkpoints by name, search checkpoints that meet specific criteria.
-
Unified Entrypoint for Scripts
You can execute any script provided by all OpenMMLab codebases with unified commands. Train, test and inference become easier than ever. Besides, you can use gridsearch command for vanilla hyper-parameter search.
License
This project is released under the Apache 2.0 license.
Changelog
v0.1.1 was released in 13/6/2021.
Customization
You can use .mimrc for customization. Now we support customize default values of each sub-command. Please refer to customization.md for details.
Build custom projects with MIM
We provide some examples of how to build custom projects based on OpenMMLAB codebases and MIM in MIM-Example.
Without worrying about copying codes and scripts from existing codebases, users can focus on developing new components and MIM helps integrate and run the new project.
Installation
Please refer to installation.md for installation.
Command
1. install
-
command
> mim install mmcv-full
> mim install mmcv-full==1.5.0
> mim install mmcls
> mim install git+https://github.com/open-mmlab/mmclassification.git
> git clone https://github.com/open-mmlab/mmclassification.git
> cd mmclassification
> mim install .
mim install git+https://github.com/xxx/mmcls-project.git
-
api
from mim import install
install('mmcv-full')
install('mmcls')
install('git+https://github.com/xxx/mmcls-project.git')
2. uninstall
3. list
4. search
-
command
> mim search mmcls
> mim search mmcls==0.23.0 --remote
> mim search mmcls --config resnet18_8xb16_cifar10
> mim search mmcls --model resnet
> mim search mmcls --dataset cifar-10
> mim search mmcls --valid-field
> mim search mmcls --condition 'batch_size>45,epochs>100'
> mim search mmcls --condition 'batch_size>45 epochs>100'
> mim search mmcls --condition '128<batch_size<=256'
> mim search mmcls --sort batch_size epochs
> mim search mmcls --field epochs batch_size weight
> mim search mmcls --exclude-field weight paper
-
api
from mim import get_model_info
get_model_info('mmcls')
get_model_info('mmcls==0.23.0', local=False)
get_model_info('mmcls', models=['resnet'])
get_model_info('mmcls', training_datasets=['cifar-10'])
get_model_info('mmcls', filter_conditions='batch_size>45,epochs>100')
get_model_info('mmcls', filter_conditions='batch_size>45 epochs>100')
get_model_info('mmcls', filter_conditions='128<batch_size<=256')
get_model_info('mmcls', sorted_fields=['batch_size', 'epochs'])
get_model_info('mmcls', shown_fields=['epochs', 'batch_size', 'weight'])
5. download
-
command
> mim download mmcls --config resnet18_8xb16_cifar10
> mim download mmcls --config resnet18_8xb16_cifar10 --dest .
-
api
from mim import download
download('mmcls', ['resnet18_8xb16_cifar10'])
download('mmcls', ['resnet18_8xb16_cifar10'], dest_root='.')
6. train
-
command
> mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 0
> mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1
> mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 4 \
--launcher pytorch
> mim train mmcls resnet101_b16x8_cifar10.py --launcher slurm --gpus 8 \
--gpus-per-node 8 --partition partition_name --work-dir tmp
> mim train -h
> mim train mmcls -h
-
api
from mim import train
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=0,
other_args='--work-dir tmp')
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=1,
other_args='--work-dir tmp')
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=4,
launcher='pytorch', other_args='--work-dir tmp')
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=8,
launcher='slurm', gpus_per_node=8, partition='partition_name',
other_args='--work-dir tmp')
7. test
-
command
> mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 1 --metrics accuracy
> mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 1 --out tmp.pkl
> mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 4 --launcher pytorch --metrics accuracy
> mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 8 --metrics accuracy --partition \
partition_name --gpus-per-node 8 --launcher slurm
> mim test -h
> mim test mmcls -h
-
api
from mim import test
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=1, other_args='--metrics accuracy')
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=1, other_args='--out tmp.pkl')
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=4, launcher='pytorch',
other_args='--metrics accuracy')
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=8, partition='partition_name',
launcher='slurm', gpus_per_node=8, other_args='--metrics accuracy')
8. run
-
command
> mim run mmcls get_flops resnet101_b16x8_cifar10.py
> mim run mmcls publish_model input.pth output.pth
> srun -p partition --gres=gpu:1 mim run mmcls train \
resnet101_b16x8_cifar10.py --work-dir tmp
> srun -p partition --gres=gpu:1 mim run mmcls test \
resnet101_b16x8_cifar10.py tmp/epoch_3.pth --metrics accuracy
> mim run -h
> mim run mmcls -h
> mim run mmcls train -h
-
api
from mim import run
run(repo='mmcls', command='get_flops',
other_args='resnet101_b16x8_cifar10.py')
run(repo='mmcls', command='publish_model',
other_args='input.pth output.pth')
run(repo='mmcls', command='train',
other_args='resnet101_b16x8_cifar10.py --work-dir tmp')
run(repo='mmcls', command='test',
other_args='resnet101_b16x8_cifar10.py tmp/epoch_3.pth --metrics accuracy')
9. gridsearch
-
command
> mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 0 \
--search-args '--optimizer.lr 1e-2 1e-3'
> mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1 \
--search-args '--optimizer.lr 1e-2 1e-3'
> mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1 \
--search-args '--optimizer.weight_decay 1e-3 1e-4'
> mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1 \
--search-args '--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay 1e-3 \
1e-4'
> mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 8 \
--partition partition_name --gpus-per-node 8 --launcher slurm \
--search-args '--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay 1e-3 \
1e-4'
> mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 8 \
--partition partition_name --gpus-per-node 8 --launcher slurm \
--max-jobs 2 --search-args '--optimizer.lr 1e-2 1e-3 \
--optimizer.weight_decay 1e-3 1e-4'
> mim gridsearch -h
> mim gridsearch mmcls -h
-
api
from mim import gridsearch
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=0,
search_args='--optimizer.lr 1e-2 1e-3',
other_args='--work-dir tmp')
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=1,
search_args='--optimizer.lr 1e-2 1e-3',
other_args='--work-dir tmp')
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=1,
search_args='--optimizer.weight_decay 1e-3 1e-4',
other_args='--work-dir tmp')
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=1,
search_args='--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay'
'1e-3 1e-4',
other_args='--work-dir tmp')
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=8,
partition='partition_name', gpus_per_node=8, launcher='slurm',
search_args='--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay'
' 1e-3 1e-4',
other_args='--work-dir tmp')
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=8,
partition='partition_name', gpus_per_node=8, launcher='slurm',
max_workers=2,
search_args='--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay'
' 1e-3 1e-4',
other_args='--work-dir tmp')
Contributing
We appreciate all contributions to improve mim. Please refer to CONTRIBUTING.md for the contributing guideline.
License
This project is released under the Apache 2.0 license.
Projects in OpenMMLab
- MMEngine: OpenMMLab foundational library for training deep learning models.
- MMCV: OpenMMLab foundational library for computer vision.
- MMEval: A unified evaluation library for multiple machine learning libraries.
- MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
- MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
- MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
- MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
- MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMFlow: OpenMMLab optical flow toolbox and benchmark.
- MMDeploy: OpenMMLab model deployment framework.
- MMRazor: OpenMMLab model compression toolbox and benchmark.
- Playground: A central hub for gathering and showcasing amazing projects built upon OpenMMLab.