You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

optical_toolkit

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

optical_toolkit

An API for streamlining unsupervised ML ops such as visualizations, clustering, CNN insights, etc.

1.3.0
pipPyPI
Maintainers
1

opticaltoolkit_logo

A collection of deep learning -- computer vision utility functions

Installation

pip install optical_toolkit

Visualize

  • Visualize a dataset in a grid
from sklearn.datasets import load_digits
from optical_toolkit.visualize import plot_images

X, y = load_digits()

plot_images(X, targets=y)

dataset

  • Summarize a dataset by classes
from sklearn.datasets import load_digits
from optical_toolkit.visualize import plot_images

X, y = load_digits()

summarize_images(X, targets=y, num_images_per_class=10, num_classes=10)

dataset

  • Visualize the 2d and 3d embeddings of images
from sklearn.datasets import load_digits
from optical_toolkit.embeddings import get_embeddings

X, y = load_digits()

2d_embeddings, fig_2d = get_embeddings(X, y, dims=2, embedding_type="tsne", return_plot=True)
3d_embeddings, fig_3d = get_embeddings(X, y, dims=3, embedding_type="tsne", return_plot=True)

embedding2d embedding3d

embedding2d_comp embedding3d_comp

Insight

  • Visualize the filters of a (trained) CNN model
from optical_toolkit.cnn_filters import display_filters, display_model_filters

model_name = "xception"

layer_names = [
    "block2_sepconv1",
    "block5_sepconv1",
    "block9_sepconv1",
    "block14_sepconv1",
]

for layer_name in layer_names:
    display_filters(
    model=model_name,
    layer_name=layer_name,
)

filters filters filters filters

display_model_filters(model=model_name)

model_filters

  • Visualize the filters of your custom CNN with custom objects
import keras

model_name = "examples/custom_models/svdnet.keras"
dir_name = "examples/insights"

@keras.saving.register_keras_serializable()
class ResidualConvBlock(keras.layers.Layer):
    ...

display_model_filters(
    model_name,
    custom_layer_prefix="residual",
)

model_filters

Analyze

  • Analyze 'highly confident' errors in classification tasks
    • Confusion matrix normalized by row/column

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts