Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pangeamt-tea

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pangeamt-tea

TEA - Translation Engine Architect

  • 0.2.34
  • PyPI
  • Socket score

Maintainers
1

TEA - Translation Engine Architect

A command line tool to create translation engine.

Install

First install pipx then (x being your python version):

pipx install pangeamt-tea

Usage

Step 1: Create a new project

tea new --customer customer --src_lang es --tgt_lang en --flavor automotion --version 2

This command will create the project directory structure:

├── customer_es_en_automotion_2
│   ├── config.yml
│   └── data

Then enter in the directory

cd customer_es_en_automotion_2

Step 2: Configuration

Tokenizer

A tokenizer can be applied to source and target

tea config tokenizer --src mecab  --tgt moses

To list all available tokenizer:

tea config tokenizer --help

if you would not like to use tokenizers you can run:

tea config tokenizer -s none -t none
Truecaser
tea config truecaser --src --tgt

if you would not like to use truecaser you can run:

tea config tokenizer
BPE / SentencePiece

For joint BPE:

tea config bpe -j

For not joint BPE:

 tea bpe -s -t

For using sentencepiece:

tea config bpe --sentencepiece 

and options --model_type TEXT (unigram) --vocab_size INTEGER (8000) if you would like to modify them from default

Processors
tea config processors -s "{processors}"

being processors a list of preprocesses and postprocesses.

To list all available processors:

tea config processors --list

In order to test the processors that will be applied you can run this script in the main TEA project directory:

debug_normalizers.py <config_file> <src_test> <tgt_test>

being config_file the yaml config and src_test and tgt_test the segments to test for source and target text.

Prepare

tea config prepare --shard_size 100000 --src_seq_length 400 --tgt_seq_length 400

Translation model

tea config translation-model -n onmt

Step 3:

Copy some multilingual ressources (.tmx, bilingual files, .af ) into the 'data' directory

Step 4: Run

Create workflow

tea worflow new

Clean the data passing the normalizers and validators:

tea workflow clean -n {clean_th} -d

being clean_th the number of threads.

Preprocess the data (split data in train, dev or test, tokenization, BPE):

tea workflow prepare -n {prepare_th} -s 3

being prepare_th the number of threads.

Training model

tea workflow train --gpu 0

if you do not want to use gpu do not use this parameter.

Evaluate model

tea workflow eval --step {step} --src file.src --ref file.tgt --log file.log --out file.out --gpu 0

Reset

First of all you may check the current status of the workflow using:

tea workflow status

Then you can reset your worflow at any step (clean, prepare, train, eval) using:

tea worflow reset -s {step_name}

Or if you want to make a full reset of the workflow use:

tea workflow reset

If you need some help on how to use reset command:

tea workflow reset --help

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc