Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

parallel-pandas

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

parallel-pandas

Parallel processing on pandas with progress bars

  • 0.6.4
  • PyPI
  • Socket score

Maintainers
1

Parallel-pandas

PyPI version fury.io PyPI license PyPI download month

Makes it easy to parallelize your calculations in pandas on all your CPUs.

Installation

pip install --upgrade parallel-pandas

Quickstart

import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas

#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=True)

# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))

# calculate multiple quantiles. Pandas only uses one core of CPU
%%timeit
res = df.quantile(q=[.25, .5, .95], axis=1)

3.66 s ± 31.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

#p_quantile is parallel analogue of quantile methods. Can use all cores of your CPU.
%%timeit
res = df.p_quantile(q=[.25, .5, .95], axis=1)

679 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

As you can see the p_quantile method is 5 times faster!

Usage

Under the hood, parallel-pandas works very simply. The Dataframe or Series is split into chunks along the first or second axis. Then these chunks are passed to a pool of processes or threads where the desired method is executed on each part. At the end, the parts are concatenated to get the final result.

When initializing parallel-pandas you can specify the following options:

  1. n_cpu - the number of cores of your CPU that you want to use (default None - use all cores of CPU)
  2. split_factor - Affects the number of chunks into which the DataFrame/Series is split according to the formula chunks_number = split_factor*n_cpu (default 1).
  3. show_vmem - Shows a progress bar with available RAM (default False)
  4. disable_pr_bar - Disable the progress bar for parallel tasks (default False)

For example

import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas

#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=False)

# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))

During initialization, we specified split_factor=4 and n_cpu = 16, so the DataFrame will be split into 64 chunks (in the case of the describe method, axis = 1) and the progress bar shows the progress for each chunk

You can parallelize any expression with pandas Dataframe. For example, let's do a z-score normalization of columns in a dataframe. Let's look at the execution time and memory consumption. Compare with synchronous execution and with Dask.DataFrame

import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
import dask.dataframe as dd
from time import monotonic

#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=8, disable_pr_bar=True)

# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 1000)))

# create dask DataFrame
ddf = dd.from_pandas(df, npartitions=128)

start = monotonic()
res=(df-df.mean())/df.std()
print(f'synchronous z-score normalization time took: {monotonic()-start:.1f} s.')
synchronous z-score normalization time took: 21.7 s.
#parallel-pandas
start = monotonic()
res=(df-df.p_mean())/df.p_std()
print(f'parallel z-score normalization time took: {monotonic()-start:.1f} s.')
parallel z-score normalization time took: 11.7 s.
#dask dataframe
start = monotonic()
res=((ddf-ddf.mean())/ddf.std()).compute()
print(f'dask parallel z-score normalization time took: {monotonic()-start:.1f} s.')
dask parallel z-score normalization time took: 12.5 s.

Pay attention to memory consumption. parallel-pandas and dask use almost half as much RAM as pandas

For some methods parallel-pandas is faster than dask.DataFrame:

#dask
%%time
res = ddf.nunique().compute()
Wall time: 42.9 s

%%time
res = ddf.rolling(10).mean().compute()
Wall time: 19.1 s

#parallel-pandas
%%time
res = df.p_nunique()
Wall time: 12.9 s

%%time
res = df.rolling(10).p_mean()
Wall time: 12.5 s

API

Parallel counterparts for pandas Series methods

methodsparallel analogueexecutor
pd.Series.apply()pd.Series.p_apply()threads / processes
pd.Series.map()pd.Series.p_map()threads / processes

Parallel counterparts for pandas SeriesGroupBy methods

methodsparallel analogueexecutor
pd.SeriesGroupBy.apply()pd.SeriesGroupBy.p_apply()threads / processes

Parallel counterparts for pandas Dataframe methods

methodsparallel analogueexecutor
df.mean()df.p_mean()threads
df.min()df.p_min()threads
df.max()df.p_max()threads
df.median()df.p_max()threads
df.kurt()df.p_kurt()threads
df.skew()df.p_skew()threads
df.sum()df.p_sum()threads
df.prod()df.p_prod()threads
df.var()df.p_var()threads
df.sem()df.p_sem()threads
df.std()df.p_std()threads
df.cummin()df.p_cummin()threads
df.cumsum()df.p_cumsum()threads
df.cummax()df.p_cummax()threads
df.cumprod()df.p_cumprod()threads
df.apply()df.p_apply()threads / processes
df.applymap()df.p_applymap()processes
df.replace()df.p_replace()threads
df.describe()df.p_describe()threads
df.nunique()df.p_nunique()threads / processes
df.mad()df.p_mad()threads
df.idxmin()df.p_idxmin()threads
df.idxmax()df.p_idxmax()threads
df.rank()df.p_rank()threads
df.mode()df.p_mode()threads/processes
df.agg()df.p_agg()threads/processes
df.aggregate()df.p_aggregate()threads/processes
df.quantile()df.p_quantile()threads/processes
df.corr()df.p_corr()threads/processes

Parallel counterparts for pandas DataframeGroupBy methods

methodsparallel analogueexecutor
DataFrameGroupBy.apply()DataFrameGroupBy.p_apply()threads / processes

Parallel counterparts for pandas window methods

Rolling
methodsparallel analogueexecutor
pd.core.window.Rolling.apply()pd.core.window.Rolling.p_apply()threads / processes
pd.core.window.Rolling.min()pd.core.window.Rolling.p_min()threads / processes
pd.core.window.Rolling.max()pd.core.window.Rolling.p_max()threads / processes
pd.core.window.Rolling.mean()pd.core.window.Rolling.p_mean()threads / processes
pd.core.window.Rolling.sum()pd.core.window.Rolling.p_sum()threads / processes
pd.core.window.Rolling.var()pd.core.window.Rolling.p_var()threads / processes
pd.core.window.Rolling.sem()pd.core.window.Rolling.p_sem()threads / processes
pd.core.window.Rolling.skew()pd.core.window.Rolling.p_skew()threads / processes
pd.core.window.Rolling.kurt()pd.core.window.Rolling.p_kurt()threads / processes
pd.core.window.Rolling.median()pd.core.window.Rolling.p_median()threads / processes
pd.core.window.Rolling.quantile()pd.core.window.Rolling.p_quantile()threads / processes
pd.core.window.Rolling.rank()pd.core.window.Rolling.p_rank()threads / processes
pd.core.window.Rolling.agg()pd.core.window.Rolling.p_agg()threads / processes
pd.core.window.Rolling.aggregate()pd.core.window.Rolling.p_aggregate()threads / processes
Window
methodsparallel analogueexecutor
pd.core.window.Window.mean()pd.core.window.Window.p_mean()threads / processes
pd.core.window.Window.sum()pd.core.window.Window.p_sum()threads / processes
pd.core.window.Window.var()pd.core.window.Window.p_var()threads / processes
pd.core.window.Window.std()pd.core.window.Window.p_std()threads / processes
RollingGroupby
methodsparallel analogueexecutor
pd.core.window.RollingGroupby.apply()pd.core.window.RollingGroupby.p_apply()threads / processes
pd.core.window.RollingGroupby.min()pd.core.window.RollingGroupby.p_min()threads / processes
pd.core.window.RollingGroupby.max()pd.core.window.RollingGroupby.p_max()threads / processes
pd.core.window.RollingGroupby.mean()pd.core.window.RollingGroupby.p_mean()threads / processes
pd.core.window.RollingGroupby.sum()pd.core.window.RollingGroupby.p_sum()threads / processes
pd.core.window.RollingGroupby.var()pd.core.window.RollingGroupby.p_var()threads / processes
pd.core.window.RollingGroupby.sem()pd.core.window.RollingGroupby.p_sem()threads / processes
pd.core.window.RollingGroupby.skew()pd.core.window.RollingGroupby.p_skew()threads / processes
pd.core.window.RollingGroupby.kurt()pd.core.window.RollingGroupby.p_kurt()threads / processes
pd.core.window.RollingGroupby.median()pd.core.window.RollingGroupby.p_median()threads / processes
pd.core.window.RollingGroupby.quantile()pd.core.window.RollingGroupby.p_quantile()threads / processes
pd.core.window.RollingGroupby.rank()pd.core.window.RollingGroupby.p_rank()threads / processes
pd.core.window.RollingGroupby.agg()pd.core.window.RollingGroupby.p_agg()threads / processes
pd.core.window.RollingGroupby.aggregate()pd.core.window.RollingGroupby.p_aggregate()threads / processes
Expanding
methodsparallel analogueexecutor
pd.core.window.Expanding.apply()pd.core.window.Expanding.p_apply()threads / processes
pd.core.window.Expanding.min()pd.core.window.Expanding.p_min()threads / processes
pd.core.window.Expanding.max()pd.core.window.Expanding.p_max()threads / processes
pd.core.window.Expanding.mean()pd.core.window.Expanding.p_mean()threads / processes
pd.core.window.Expanding.sum()pd.core.window.Expanding.p_sum()threads / processes
pd.core.window.Expanding.var()pd.core.window.Expanding.p_var()threads / processes
pd.core.window.Expanding.sem()pd.core.window.Expanding.p_sem()threads / processes
pd.core.window.Expanding.skew()pd.core.window.Expanding.p_skew()threads / processes
pd.core.window.Expanding.kurt()pd.core.window.Expanding.p_kurt()threads / processes
pd.core.window.Expanding.median()pd.core.window.Expanding.p_median()threads / processes
pd.core.window.Expanding.quantile()pd.core.window.Expanding.p_quantile()threads / processes
pd.core.window.Expanding.rank()pd.core.window.Expanding.p_rank()threads / processes
pd.core.window.Expanding.agg()pd.core.window.Expanding.p_agg()threads / processes
pd.core.window.Expanding.aggregate()pd.core.window.Expanding.p_aggregate()threads / processes
ExpandingGroupby
methodsparallel analogueexecutor
pd.core.window.ExpandingGroupby.apply()pd.core.window.ExpandingGroupby.p_apply()threads / processes
pd.core.window.ExpandingGroupby.min()pd.core.window.ExpandingGroupby.p_min()threads / processes
pd.core.window.ExpandingGroupby.max()pd.core.window.ExpandingGroupby.p_max()threads / processes
pd.core.window.ExpandingGroupby.mean()pd.core.window.ExpandingGroupby.p_mean()threads / processes
pd.core.window.ExpandingGroupby.sum()pd.core.window.ExpandingGroupby.p_sum()threads / processes
pd.core.window.ExpandingGroupby.var()pd.core.window.ExpandingGroupby.p_var()threads / processes
pd.core.window.ExpandingGroupby.sem()pd.core.window.ExpandingGroupby.p_sem()threads / processes
pd.core.window.ExpandingGroupby.skew()pd.core.window.ExpandingGroupby.p_skew()threads / processes
pd.core.window.ExpandingGroupby.kurt()pd.core.window.ExpandingGroupby.p_kurt()threads / processes
pd.core.window.ExpandingGroupby.median()pd.core.window.ExpandingGroupby.p_median()threads / processes
pd.core.window.ExpandingGroupby.quantile()pd.core.window.ExpandingGroupby.p_quantile()threads / processes
pd.core.window.ExpandingGroupby.rank()pd.core.window.ExpandingGroupby.p_rank()threads / processes
pd.core.window.ExpandingGroupby.agg()pd.core.window.ExpandingGroupby.p_agg()threads / processes
pd.core.window.ExpandingGroupby.aggregate()pd.core.window.ExpandingGroupby.p_aggregate()threads / processes

ExponentialMovingWindow

methodsparallel analogueexecutor
pd.core.window.ExponentialMovingWindow.mean()pd.core.window.ExponentialMovingWindow.p_mean()threads / processes
pd.core.window.ExponentialMovingWindow.sum()pd.core.window.ExponentialMovingWindow.p_sum()threads / processes
pd.core.window.ExponentialMovingWindow.var()pd.core.window.ExponentialMovingWindow.p_var()threads / processes
pd.core.window.ExponentialMovingWindow.std()pd.core.window.ExponentialMovingWindow.p_std()threads / processes

ExponentialMovingWindowGroupby

methodsparallel analogueexecutor
pd.core.window.ExponentialMovingWindowGroupby.mean()pd.core.window.ExponentialMovingWindowGroupby.p_mean()threads / processes
pd.core.window.ExponentialMovingWindowGroupby.sum()pd.core.window.ExponentialMovingWindowGroupby.p_sum()threads / processes
pd.core.window.ExponentialMovingWindowGroupby.var()pd.core.window.ExponentialMovingWindowGroupby.p_var()threads / processes
pd.core.window.ExponentialMovingWindowGroupby.std()pd.core.window.ExponentialMovingWindowGroupby.p_std()threads / processes

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc