Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

parametric

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

parametric

A simple package for parameterization

  • 0.9.0
  • PyPI
  • Socket score

Maintainers
1

parametric

parametric is a Python library designed for managing and validating immutable parameters. It is built around pydantic and enhances it by focusing on immutability and custom configurations, making it a robust choice for configuration management in applications and especially data-science pipelines.

Key Features

  • Immutable Parameters: parametric enforces immutability by restricting parameters to immutable types such as int, float, str,bool,bytes,tuple,None,pathlib.Path,Enum,Literal, and Unions of those.
  • Freeze Mechanism: parametric introduces a powerful freeze mechanism that allows fields to remain unset or mutable until explicitly frozen, at which point all fields are locked and cannot be modified.
  • Override Mechanisms: Supports overriding parameters via CLI arguments, environment variables, YAML files, and dictionaries.
  • Serialization: Parameters can be easily saved and loaded using YAML.

Installation

You can install parametric via pip:

pip install parametric

Getting Started

Here's a basic example to illustrate how to use parametric:

from parametric import BaseParams

class MyParams(BaseParams):
    nn_encoder_name: str = "efficientnet-b0"
    nn_default_encoder_weights: str = "imagenet"
    image_shape: tuple[int, int] = (640, 640)
    num_epochs: int = 1000
    train_batch_size: int = 12
    val_batch_size: int | None = None

params = MyParams()
params.image_shape = (1024, 1024)
params.freeze()  # Freeze the parameters, making them immutable

Override Mechanisms

parametric provides multiple ways to override parameters. Below are examples of how you can override parameters using different methods.

1. Override from CLI

You can override parameters by passing them as command-line arguments when running the script.

Run the script with:

python script.py --num_epochs 500

This example shows how to override num_epochs using CLI arguments:

from parametric import BaseParams

class MyParams(BaseParams):
    num_epochs: int = 1000

params = MyParams()
params.override_from_cli()
params.freeze()

# NOTE: params.model_dump() is a function of pydantic.BaseModel we inherit from
print(params.model_dump())  # {'num_epochs': 500} 

2. Override from Environment Variables

You can override parameters by setting environment variables with a specified prefix before running the script.

Run the script with:

export _param_val_batch_size=32 && python script.py

This example shows how to override val_batch_size using environment variables:

from parametric import BaseParams

class MyParams(BaseParams):
    val_batch_size: int = 36

params = MyParams()
params.override_from_envs(env_prefix="_param_")
params.freeze()

print(params.model_dump())  # {'val_batch_size': 32}

3. Override from YAML File

You can override parameters by loading values from a YAML configuration file.

Example config.yaml:

train_batch_size: 8

This example shows how to override train_batch_size using values from config.yaml:

from parametric import BaseParams

class MyParams(BaseParams):
    train_batch_size: int = 12

params = MyParams()
params.override_from_yaml("config.yaml")
params.freeze()

print(params.model_dump())  # {'train_batch_size': 8}

4. Override from Dictionary

You can override parameters by passing a dictionary directly into the model.

from parametric import BaseParams

class MyParams(BaseParams):
    num_epochs: int = 1000

params = MyParams()
params.override_from_dict({"num_epochs": 500})
params.freeze()

print(params.model_dump())  # {'num_epochs': 500}

Opinionated Usage

This is how we like to use parametric in our pipeline:

  • We define a global params object in a dedicated module (e.g., params.py) to be shared across different modules in the pipeline.
  • After overrides and changes are applied (in the start of the pipe is the best), the parameters are frozen to prevent accidental mutation. Because all params are immutable, no-one will change them accidentally.
  • During development, we use a git-ignored YAML file (e.g., params.yaml) for configuration, allowing for easy debugging and experimentation without polluting the repository.

Let's see:

params.py (module to define the parameters and expose params):

from pathlib import Path  # NOTE: every time a developer switches from str/os.path to pathlib.Path, an angel gets his wings!

from parametric import BaseParams


class MyParams(BaseParams):
    data_dirs: tuple[Path, ...]
    image_shape: tuple[int, int] = (640, 640)
    nn_encoder_name: str = "efficientnet-b0"
    nn_default_encoder_weights: str = "imagenet"
    num_epochs: int = 1000
    train_batch_size: int = 12
    val_batch_size: int = 36

params = MyParams()

main.py:

from params import params
from module_a import run_pipeline


def main():

    params.override_from_yaml("params.yaml")

    # Optionally override via CLI
    params.override_from_cli()

    # Freeze the parameters to make them immutable
    params.freeze()

    # Proceed with the rest of the pipeline
    run_pipeline()


if __name__ == "__main__":
    main()

module_a.py:

from params import params  # This can be imported in many more files as needed


def run_pipeline(): 
    # do stuff with params... e.g.:
    val_loader = dataloader(params.val_batch_size)

params.yaml:

This file is git-ignored (again, just a suggestion), all params here are example for debug senerio that overrides the defaults

data_dirs:
  - "/path/to/data"
train_batch_size: 16
val_batch_size: 32

Contributing

Contributions are welcome! Please submit issues or pull requests on the GitHub repository.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc