🚨 Shai-Hulud Strikes Again:834 Packages Compromised.Technical Analysis →
Socket
Book a DemoInstallSign in
Socket

parquetframe

Package Overview
Dependencies
Maintainers
1
Versions
15
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

parquetframe

A universal data processing framework with multi-engine support (pandas, Polars, Dask) and multi-format I/O (CSV, JSON, Parquet, ORC, Avro) with intelligent backend selection

pipPyPI
Version
2.0.0
Maintainers
1

ParquetFrame

High-performance data analytics with AI/ML capabilities

PyPI version License

ParquetFrame is a unified data platform combining SQL, time series, geospatial, financial analysis, and AI/ML capabilities - all with familiar DataFrame interfaces.

✨ Features

  • SQL Engine: Query DataFrames with SQL (DataFusion/DuckDB)
  • Time Series: .ts accessor for resampling, rolling windows
  • GeoSpatial: .geo accessor for spatial operations
  • Financial: .fin accessor for technical indicators
  • AI/ML: Tetnus ML framework + RAG with Knowlogy knowledge graph
  • Cloud: S3, GCS, Azure Blob Storage support
  • Interactive CLI: Rich REPL with syntax highlighting

🚀 Quick Start

pip install parquetframe
import pandas as pd
import parquetframe as pf
import parquetframe.sql
import parquetframe.time
import parquetframe.finance

# SQL queries
result = pf.sql("SELECT * FROM df WHERE value > 100", df=df)

# Time series
daily = df.ts.resample('1D', agg='mean')

# Financial indicators
rsi = df.fin.rsi('close', 14)
macd = df.fin.macd('close')

📚 Documentation

🎯 Use Cases

Financial Analysis

import parquetframe.finance

prices = pd.read_csv("stock.csv", index_col='date', parse_dates=True)
prices['SMA_20'] = prices.fin.sma('close', 20)
prices['RSI'] = prices.fin.rsi('close', 14)

Time Series Forecasting

import parquetframe.time

sensor_data = df.ts.resample('1H', agg='mean')
smoothed = sensor_data.ts.rolling('24H', agg='mean')

GeoSpatial Analysis

import geopandas as gpd
import parquetframe.geo

cities = gpd.read_file("cities.geojson")
buffered = cities.geo.buffer(1000)

AI-Powered RAG

from parquetframe.ai import SimpleRagPipeline
from parquetframe import knowlogy

# Query knowledge graph
formula = knowlogy.get_formula("variance")

# RAG with formula grounding
result = pipeline.run_query("Explain variance", user_context="analyst")

🏗️ Architecture

ParquetFrame combines:

  • Rust Core: High-performance kernels (pf-time-core, pf-geo-core, pf-fin-core)
  • Python API: Familiar pandas-style accessors
  • AI/ML: Tetnus framework + Knowlogy knowledge graph
  • Cloud: Multi-cloud storage integration

đź“„ License

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License

🙏 Acknowledgments

Built on top of:

  • Apache Arrow / Polars / pandas
  • DataFusion / DuckDB
  • GeoPandas / Shapely
  • PyTorch (Tetnus)

Keywords

pandas

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts