ParquetFrame
High-performance data analytics with AI/ML capabilities

ParquetFrame is a unified data platform combining SQL, time series, geospatial, financial analysis, and AI/ML capabilities - all with familiar DataFrame interfaces.
✨ Features
- SQL Engine: Query DataFrames with SQL (DataFusion/DuckDB)
- Time Series:
.ts accessor for resampling, rolling windows
- GeoSpatial:
.geo accessor for spatial operations
- Financial:
.fin accessor for technical indicators
- AI/ML: Tetnus ML framework + RAG with Knowlogy knowledge graph
- Cloud: S3, GCS, Azure Blob Storage support
- Interactive CLI: Rich REPL with syntax highlighting
🚀 Quick Start
pip install parquetframe
import pandas as pd
import parquetframe as pf
import parquetframe.sql
import parquetframe.time
import parquetframe.finance
result = pf.sql("SELECT * FROM df WHERE value > 100", df=df)
daily = df.ts.resample('1D', agg='mean')
rsi = df.fin.rsi('close', 14)
macd = df.fin.macd('close')
📚 Documentation
🎯 Use Cases
Financial Analysis
import parquetframe.finance
prices = pd.read_csv("stock.csv", index_col='date', parse_dates=True)
prices['SMA_20'] = prices.fin.sma('close', 20)
prices['RSI'] = prices.fin.rsi('close', 14)
Time Series Forecasting
import parquetframe.time
sensor_data = df.ts.resample('1H', agg='mean')
smoothed = sensor_data.ts.rolling('24H', agg='mean')
GeoSpatial Analysis
import geopandas as gpd
import parquetframe.geo
cities = gpd.read_file("cities.geojson")
buffered = cities.geo.buffer(1000)
AI-Powered RAG
from parquetframe.ai import SimpleRagPipeline
from parquetframe import knowlogy
formula = knowlogy.get_formula("variance")
result = pipeline.run_query("Explain variance", user_context="analyst")
🏗️ Architecture
ParquetFrame combines:
- Rust Core: High-performance kernels (pf-time-core, pf-geo-core, pf-fin-core)
- Python API: Familiar pandas-style accessors
- AI/ML: Tetnus framework + Knowlogy knowledge graph
- Cloud: Multi-cloud storage integration
đź”— Project Links
đź“„ License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International Public License
🙏 Acknowledgments
Built on top of:
- Apache Arrow / Polars / pandas
- DataFusion / DuckDB
- GeoPandas / Shapely
- PyTorch (Tetnus)