New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

passagemath-latte-4ti2

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

passagemath-latte-4ti2

passagemath: Lattice points in polyhedra with LattE integrale and 4ti2

  • 10.5.22
  • PyPI
  • Socket score

Maintainers
1

============================================================================ passagemath: Lattice points in polyhedra with LattE integrale and 4ti2

About SageMath

"Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, and MATLAB"

Copyright (C) 2005-2024 The Sage Development Team

https://www.sagemath.org

SageMath fully supports all major Linux distributions, recent versions of macOS, and Windows (Windows Subsystem for Linux).

See https://doc.sagemath.org/html/en/installation/index.html for general installation instructions.

About this pip-installable distribution package

This pip-installable source distribution passagemath-latte-4ti2 provides an interface to LattE integrale <https://www.math.ucdavis.edu/~latte/>_ (for the problems of counting lattice points in and integration over convex polytopes) and 4ti2 <https://github.com/4ti2/4ti2>_ (for algebraic, geometric and combinatorial problems on linear spaces).

What is included

  • Python interface to LattE integrale programs <https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/latte.html#module-sage.interfaces.latte>_

  • Python interface to 4ti2 programs <https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/four_ti_2.html>_

  • Raw access to all executables from Python using sage.features.latte <https://doc.sagemath.org/html/en/reference/spkg/sage/features/latte.html>_ and sage.features.four_ti_2 <https://doc.sagemath.org/html/en/reference/spkg/sage/features/four_ti_2.html>_

  • The binary wheels published on PyPI include a prebuilt copy of LattE integrale and 4ti2.

Examples

Using LattE integrale and 4ti2 programs on the command line::

$ pipx run --pip-args="--prefer-binary" --spec "passagemath-latte-4ti2" sage -sh -c 'ppi 5'
...
### This makes 47 PPI up to sign
### Writing data file ppi5.gra and matrix file ppi5.mat done.

Finding the installation location of a LattE integrale or 4ti2 program in Python::

$ pipx run --pip-args="--prefer-binary" --spec "passagemath-latte-4ti2[test]" ipython

In [1]: from sage.features.latte import Latte_count

In [2]: Latte_count().absolute_filename()
Out[2]: '/Users/mkoeppe/.local/pipx/.cache/2dc147a5e4863b4/lib/python3.11/site-packages/sage_wheels/bin/count'

In [3]: from sage.features.four_ti_2 import FourTi2Executable

In [4]: FourTi2Executable('ppi').absolute_filename()
Out[2]: '/Users/mkoeppe/.local/pipx/.cache/2dc147a5e4863b4/lib/python3.11/site-packages/sage_wheels/bin/ppi'

Using the low-level Python interfaces::

$ pipx run --pip-args="--prefer-binary" --spec "passagemath-latte-4ti2[test]" ipython

In [1]: from sage.interfaces.latte import count

In [2]: cdd_Hrep = 'H-representation\nbegin\n 6 4 rational\n 2 -1 0 0\n 2 0 -1 0\n 2 0 0 -1\n 2 1 0 0\n 2 0 0 1\n 2 0 1 0\nend\n'

In [3]: count(cdd_Hrep, cdd=True)
Out[3]: 125

Use with sage.geometry.polyhedron::

$ pipx run --pip-args="--prefer-binary" --spec "passagemath-latte-4ti2[test]" ipython

In [1]: from sage.all__sagemath_polyhedra import *

In [2]: P = Polyhedron(vertices=[[1,0,0], [0,0,1], [-1,1,1], [-1,2,0]])

In [3]: P.volume(measure='induced_lattice', engine='latte')
Out[3]: 3

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc