
Security News
Open Source Maintainers Feeling the Weight of the EU’s Cyber Resilience Act
The EU Cyber Resilience Act is prompting compliance requests that open source maintainers may not be obligated or equipped to handle.
Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:
It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting.
For more details, read the docs or our paper or check out the examples.
Below a simple example to generate 1000 estimates for each of our test points:
from pgbm.sklearn import HistGradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
model = HistGradientBoostingRegressor().fit(X_train, y_train)
yhat_test, yhat_test_std = model.predict(X_test, return_std=True)
yhat_dist = model.sample(yhat_test, yhat_test_std, n_estimates=1000)
See also this example where we compare PGBM to standard gradient boosting quantile regression methods, demonstrating that we can achieve comparable or better probabilistic performance whilst only training a single model.
See Installation section in our docs.
In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement).
In case further support is required, open an issue.
Olivier Sprangers, Sebastian Schelter, Maarten de Rijke. Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 21), August 14–18, 2021, Virtual Event, Singapore.
The experiments from our paper can be replicated by running the scripts in the experiments folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the datasets folder (Higgs) and to datasets/m5 (m5).
This project is licensed under the terms of the Apache 2.0 license.
This project was developed by Airlab Amsterdam.
FAQs
Probabilistic Gradient Boosting Machines
We found that pgbm demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The EU Cyber Resilience Act is prompting compliance requests that open source maintainers may not be obligated or equipped to handle.
Security News
Crates.io adds Trusted Publishing support, enabling secure GitHub Actions-based crate releases without long-lived API tokens.
Research
/Security News
Undocumented protestware found in 28 npm packages disrupts UI for Russian-language users visiting Russian and Belarusian domains.