New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

phantominator

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

phantominator

Generate numerical phantoms.

  • 0.7.0
  • PyPI
  • Socket score

Maintainers
1

Installation

.. code-block:: bash

python -m pip install phantominator

The goal is to have easy installation and usage for everyone. If something doesn't work, please open an issue and/or submit a pull request. We'll get it figured out.

pygrappa is an optional dependency required to run the phantominator.examples.radial_coil_sens example.

About

Python package for easy generation of numerical phantoms. I often need a simple image to try something out on. In MATLAB, I would use the phantom command to quickly get something to work with. In Python, it's not always quite so easy, so I made this package that's quick to install and use so there's as little friction as possible. There are other implementations of Shepp-Logan available from other projects, but they are usually not as easy to install or include other things that I don't want for this project.

This package offers both CT and MR versions.

Going forward, this module will support Python >= 3.8.

Usage

Also see the examples module and docstrings. The interface for CT phantom generation is similar to MATLAB's phantom function.

Examples can be run as:

.. code-block:: bash

# python -m phantominator.examples.[example-name], e.g.:
python -m phantominator.examples.shepp_logan

Basic usage:

.. code-block:: python

# CT phantom
from phantominator import shepp_logan
ph = shepp_logan(128)

# MR phantom (returns proton density, T1, and T2 maps)
M0, T1, T2 = shepp_logan((128, 128, 20), MR=True)

The Shepp-Logan 3D phantom has ellipsoids in [-1, 1] along the z-axis. The 2D Shepp-Logan exists at z=-0.25, so if we want just a subset along the z-axis with the first slice being the traditional 2D phantom, we can use the zlims option:

.. code-block:: python

from phantominator import shepp_logan
M0, T1, T2 = shepp_logan((64, 64, 5), MR=True, zlims=(-.25, .25))

We can also generate simple oscillating concentric circles:

.. code-block:: python

# Dynamic (concentric circles), 20 time frames
from phantominator import dynamic
ph = dynamic(128, 20)

If we want to modify ellipse/ellipsoid parameters or we just want to see what they are. For example, we can get the MR ellipsoid parameters like this:

.. code-block:: python

from phantominator import mr_ellipsoid_parameters
E = mr_ellipsoid_parameters()

See docstrings for ct_shepp_logan, and mr_shepp_logan for how the array E is structured. It follows conventions from MATLAB's phantom function.

Arbitrary k-space sampling is supported for the single coil 2D Shepp-Logan phantom:

.. code-block:: python

# Given k-space coordinates (kx, ky), where kx and ky are 1D
# arrays using the same unit conventions as BART's traj command,
# we can find the corresponding k-space measurements:
from phantominator import kspace_shepp_logan
k = kspace_shepp_logan(kx, ky)

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc