pkbar
Keras style progressbar for pytorch (PK Bar)
1. Show
pkbar.Pbar
(progress bar)
loading and processing dataset
10/10 [==============================] - 1.0s
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
2. Install
pip install pkbar
3. Usage
pkbar.Pbar
(progress bar)
import pkbar
import time
pbar = pkbar.Pbar(name='loading and processing dataset', target=10)
for i in range(10):
time.sleep(0.1)
pbar.update(i)
loading and processing dataset
10/10 [==============================] - 1.0s
import pkbar
import torch
train_per_epoch = num_of_batches_per_epoch
for epoch in range(num_epochs):
kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)
for i in range(train_per_epoch):
outputs = model(inputs)
train_loss = criterion(outputs, targets)
train_rmse = torch.sqrt(train_loss)
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])
outputs = model(inputs)
val_loss = criterion(outputs, targets)
val_rmse = torch.sqrt(val_loss)
kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)])
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
4. Acknowledge
Keras progbar's code from tf.keras.utils.Progbar