Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pkbar

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pkbar

Keras Progress Bar for PyTorch

  • 0.5
  • PyPI
  • Socket score

Maintainers
1

pkbar

Test PyPI version pypidownload

Keras style progressbar for pytorch (PK Bar)

1. Show

  • pkbar.Pbar (progress bar)
loading and processing dataset
10/10  [==============================] - 1.0s
  • pkbar.Kbar (keras bar)
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254

2. Install

pip install pkbar

3. Usage

  • pkbar.Pbar (progress bar)
import pkbar
import time

pbar = pkbar.Pbar(name='loading and processing dataset', target=10)

for i in range(10):
    time.sleep(0.1)
    pbar.update(i)
loading and processing dataset
10/10  [==============================] - 1.0s
import pkbar
import torch

# training loop
train_per_epoch = num_of_batches_per_epoch

for epoch in range(num_epochs):
    ################################### Initialization ########################################
    kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)
    # By default, all metrics are averaged over time. If you don't want this behavior, you could either:
    # 1. Set always_stateful to True, or
    # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is.
    # All others will be averaged by the progbar before display.
    ###########################################################################################

    # training
    for i in range(train_per_epoch):
        outputs = model(inputs)
        train_loss = criterion(outputs, targets)
        train_rmse = torch.sqrt(train_loss)
        optimizer.zero_grad()
        train_loss.backward()
        optimizer.step()

        ############################# Update after each batch ##################################
        kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])
        ########################################################################################

    # validation
    outputs = model(inputs)
    val_loss = criterion(outputs, targets)
    val_rmse = torch.sqrt(val_loss)

    ################################ Add validation metrics ###################################
    kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)])
    ###########################################################################################
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254

4. Acknowledge

Keras progbar's code from tf.keras.utils.Progbar

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc