Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Latest Release | |
User forum | |
PyPI Downloads | |
License |
pip install plotly==5.24.1
Inside Jupyter (installable with pip install "jupyterlab>=3" "ipywidgets>=7.6"
):
import plotly.express as px
fig = px.bar(x=["a", "b", "c"], y=[1, 3, 2])
fig.show()
See the Python documentation for more examples.
plotly.py is an interactive, open-source, and browser-based graphing library for Python :sparkles:
Built on top of plotly.js, plotly.py
is a high-level, declarative charting library. plotly.js ships with over 30 chart types, including scientific charts, 3D graphs, statistical charts, SVG maps, financial charts, and more.
plotly.py
is MIT Licensed. Plotly graphs can be viewed in Jupyter notebooks, standalone HTML files, or integrated into Dash applications.
Contact us for consulting, dashboard development, application integration, and feature additions.
plotly.py may be installed using pip...
pip install plotly==5.24.1
or conda.
conda install -c plotly plotly=5.24.1
For use in JupyterLab, install the jupyterlab
and ipywidgets
packages using pip
:
pip install "jupyterlab>=3" "ipywidgets>=7.6"
or conda
:
conda install "jupyterlab>=3" "ipywidgets>=7.6"
The instructions above apply to JupyterLab 3.x. For JupyterLab 2 or earlier, run the following commands to install the required JupyterLab extensions (note that this will require node
to be installed):
# JupyterLab 2.x renderer support
jupyter labextension install jupyterlab-plotly@5.24.1 @jupyter-widgets/jupyterlab-manager
Please check out our Troubleshooting guide if you run into any problems with JupyterLab.
For use in the Jupyter Notebook, install the notebook
and ipywidgets
packages using pip
:
pip install "notebook>=5.3" "ipywidgets>=7.5"
or conda
:
conda install "notebook>=5.3" "ipywidgets>=7.5"
plotly.py supports static image export,
using either the kaleido
package (recommended, supported as of plotly
version 4.9) or the orca
command line utility (legacy as of plotly
version 4.9).
The kaleido
package has no dependencies and can be installed
using pip...
pip install -U kaleido
or conda.
conda install -c conda-forge python-kaleido
While Kaleido is now the recommended image export approach because it is easier to install
and more widely compatible, static image export
can also be supported
by the legacy orca command line utility and the
psutil
Python package.
These dependencies can both be installed using conda:
conda install -c plotly plotly-orca==1.3.1 psutil
Or, psutil
can be installed using pip...
pip install psutil
and orca can be installed according to the instructions in the orca README.
Some plotly.py features rely on fairly large geographic shape files. The county
choropleth figure factory is one such example. These shape files are distributed as a
separate plotly-geo
package. This package can be installed using pip...
pip install plotly-geo==1.0.0
or conda
conda install -c plotly plotly-geo=1.0.0
If you're migrating from plotly.py v3 to v4, please check out the Version 4 migration guide
If you're migrating from plotly.py v2 to v3, please check out the Version 3 migration guide
Code and documentation copyright 2019 Plotly, Inc.
Code released under the MIT license.
Docs released under the Creative Commons license.
FAQs
An open-source, interactive data visualization library for Python
We found that plotly demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 8 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.