pnnx
python wrapper of pnnx, only support python 3.7+ now.
Install from pip
pnnx is available as wheel packages for macOS, Windows and Linux distributions, you can install with pip:
pip install pnnx
Build & Install from source
Prerequisites
On Unix (Linux, OS X)
- A compiler with C++14 support
- CMake >= 3.4
On Mac
- A compiler with C++14 support
- CMake >= 3.4
On Windows
- Visual Studio 2015 or higher
- CMake >= 3.4
Build & install
- clone ncnn.
git clone https://github.com/Tencent/ncnn.git
- install pytorch
install pytorch according to https://pytorch.org/ . Anaconda is strongly recommended for example:
conda install pytorch
- install
cd /pathto/ncnntools/pnnx/python
python setup.py install
Note:
If torchvision and pnnx2onnx are needed, you can set the following environment variables before 'python setup.py install' to enable them. e.g. on ubuntu:
export TORCHVISION_INSTALL_DIR="/project/torchvision"
export PROTOBUF_INCLUDE_DIR="/project/protobuf/include"
export PROTOBUF_LIBRARIES="/project/protobuf/lib64/libprotobuf.a"
export PROTOBUF_PROTOC_EXECUTABLE="/project/protobuf/bin/protoc"
To do these, you must install Torchvision and Protobuf first.
Tests
cd /pathto/ncnn/tools/pnnx/python
pytest tests
Usage
- export model to pnnx
import torch
import torchvision.models as models
import pnnx
net = models.resnet18(pretrained=True)
x = torch.rand(1, 3, 224, 224)
opt_net = pnnx.export(net, "resnet18.pt", x)
- convert existing model to pnnx
import torch
import pnnx
x = torch.rand(1, 3, 224, 224)
opt_net = pnnx.convert("resnet18.pt", x)
API Reference
- pnnx.export
model
(torch.nn.Model): model to be exported.
ptpath
(str): the torchscript name.
inputs
(torch.Tensor of list of torch.Tensor) expected inputs of the model.
inputs2
(torch.Tensor of list of torch.Tensor) alternative inputs of the model. Usually, it is used with input_shapes to resolve dynamic shape.
input_shapes
(Optional, list of int or list of list with int type inside) shapes of model inputs.
It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only
1 input, [[1,3,224,224],[1,3,224,224]] for the model that have 2 inputs.
input_types
(Optional, str or list of str) types of model inputs, it should have the same length with input_shapes
.
for example, "f32" for the model with only 1 input, ["f32", "f32"] for the model that have 2 inputs.
typename | torch type |
---|
f32 | torch.float32 or torch.float |
f64 | torch.float64 or torch.double |
f16 | torch.float16 or torch.half |
u8 | torch.uint8 |
i8 | torch.int8 |
i16 | torch.int16 or torch.short |
i32 | torch.int32 or torch.int |
i64 | torch.int64 or torch.long |
c32 | torch.complex32 |
c64 | torch.complex64 |
c128 | torch.complex128 |
input_shapes2
(Optional, list of int or list of list with int type inside) shapes of alternative model inputs,
the format is identical to input_shapes
. Usually, it is used with input_shapes to resolve dynamic shape (-1)
in model graph.
input_types2
(Optional, str or list of str) types of alternative model inputs.
device
(Optional, str, default="cpu") device type for the input in TorchScript model, cpu or gpu.
customop
(Optional, str or list of str) list of Torch extensions (dynamic library) for custom operators.
For example, "/home/nihui/.cache/torch_extensions/fused/fused.so" or
["/home/nihui/.cache/torch_extensions/fused/fused.so",...].
moduleop
(Optional, str or list of str) list of modules to keep as one big operator.
for example, "models.common.Focus" or ["models.common.Focus","models.yolo.Detect"].
optlevel
(Optional, int, default=2) graph optimization level
option | optimization level |
---|
0 | do not apply optimization |
1 | do not apply optimization |
2 | optimization more for inference |
pnnxparam
(Optional, str, default="*.pnnx.param", * is the model name): PNNX graph definition file.
pnnxbin
(Optional, str, default="*.pnnx.bin"): PNNX model weight.
pnnxpy
(Optional, str, default="*_pnnx.py"): PyTorch script for inference, including model construction
and weight initialization code.
pnnxonnx
(Optional, str, default="*.pnnx.onnx"): PNNX model in onnx format.
ncnnparam
(Optional, str, default="*.ncnn.param"): ncnn graph definition.
ncnnbin
(Optional, str, default="*.ncnn.bin"): ncnn model weight.
ncnnpy
(Optional, str, default="*_ncnn.py"): pyncnn script for inference.
- pnnx.convert
ptpath
(str): torchscript model to be converted.
Other parameters are consistent with pnnx.export