Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pretrained-backbones-unet

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pretrained-backbones-unet

A small example package

  • 0.0.1
  • PyPI
  • Socket score

Maintainers
1

Pretrained Backbones with UNet

A PyTorch-based Python library with UNet architecture and multiple backbones for Image Semantic Segmentation.

Generic badge PyPI PyPI - Downloads
PyTorch - Version Python - Version

Overview

This is a simple package for semantic segmentation with UNet and pretrained backbones. This package utilizes the timm models for the pre-trained encoders.

When dealing with relatively limited datasets, initializing a model using pre-trained weights from a large dataset can be an excellent choice for ensuring successful network training. By utilizing state-of-the-art models, such as ConvNeXt, as an encoder, you can effortlessly solve the problem at hand while achieving optimal performance in this context.

The primary characteristics of this library are as follows:

  • 430 pre-trained backbone networks are available for the UNet semantic segmentation model.

  • Supports backbone networks such as ConvNext, ResNet, EfficientNet, DenseNet, RegNet, and VGG... which are popular and SOTA performers, for the UNet model.

  • It is possible to adjust which layers of the backbone of the model are trainable parametrically.

  • It includes a DataSet class for binary and multi-class semantic segmentation.

  • And it comes with a pre-built rapid custom training class.

Installation

Pypi version:

pip install pretrained-backbones-unet

Source code version:

pip install git+https://github.com/mberkay0/pretrained-backbones-unet

Usage

from backbones_unet.model.unet import Unet
from backbones_unet.utils.dataset import SemanticSegmentationDataset
from backbones_unet.model.losses import DiceLoss
from backbones_unet.utils.trainer import Trainer

# create a torch.utils.data.Dataset/DataLoader
train_img_path = 'example_data/train/images' 
train_mask_path = 'example_data/train/masks'

val_img_path = 'example_data/val/images' 
val_mask_path = 'example_data/val/masks'

train_dataset = SemanticSegmentationDataset(train_img_path, train_mask_path)
val_dataset = SemanticSegmentationDataset(val_img_path, val_mask_path)

train_loader = DataLoader(train_dataset, batch_size=2)
val_loader = DataLoader(val_dataset, batch_size=2)

model = Unet(
    backbone='convnext_base', # backbone network name
    in_channels=3,            # input channels (1 for gray-scale images, 3 for RGB, etc.)
    num_classes=1,            # output channels (number of classes in your dataset)
)

params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(params, 1e-4) 

trainer = Trainer(
    model,                    # UNet model with pretrained backbone
    criterion=DiceLoss(),     # loss function for model convergence
    optimizer,                # optimizer for regularization
    10                        # number of epochs for model training
)

trainer.fit(train_loader, val_loader)

Available Pretrained Backbones

import backbones_unet

print(backbones_unet.__available_models__)

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc