🚀 Socket Launch Week 🚀 Day 5: Introducing Socket Fix.Learn More
Socket
Sign inDemoInstall
Socket

protein-metamorphisms-is

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

protein-metamorphisms-is

Comprehensive Python Module for Protein Data Management: Designed for streamlined integration and processing of protein information from both UniProt and PDB. Equipped with features for concurrent data fetching, robust error handling, and database synchronization.

4.1.0
PyPI
Maintainers
1

PyPI - Version Documentation Status Linting Status

Protein Information System (PIS)

Protein Information System (PIS) is an integrated biological information system focused on extracting, processing, and managing protein-related data. PIS consolidates data from UniProt, PDB, and GOA, enabling the efficient retrieval and organization of protein sequences, structures, and functional annotations.

The primary goal of PIS is to provide a robust framework for large-scale protein data extraction, facilitating downstream functional analysis and annotation transfer. The system is designed for high-performance computing (HPC) environments, ensuring scalability and efficiency.

📈 Current State of the Project

FANTASIA Redesign

🔄 FANTASIA has been completely redesigned and is now available at:
FANTASIA Repository
This new version is a pipeline for annotating GO (Gene Ontology) terms in protein sequence files (FASTAs). The redesign focuses on long-term support, updated dependencies, and improved integration with High-Performance Computing (HPC) environments.

Stable Version of the Information System

🛠️ A stable version of the information system for working with UniProt and annotation transfer is available at:
Zenodo Stable Release
This version serves as a reference implementation and provides a consistent environment for annotation transfer tasks.

Prerequisites

  • Python 3.11.6
  • RabbitMQ
  • PostgreSQL with pgVector extension installed.

Setup Instructions

1. Install Docker

Ensure Docker is installed on your system. If it’s not, you can download it from here.

2. Starting Required Services

Ensure PostgreSQL and RabbitMQ services are running.

docker run -d --name pgvectorsql \
    -e POSTGRES_USER=usuario \
    -e POSTGRES_PASSWORD=clave \
    -e POSTGRES_DB=BioData \
    -p 5432:5432 \
    pgvector/pgvector:pg16 

4. (Optional) Connect to the Database

You can use pgAdmin 4, a graphical interface for managing and interacting with PostgreSQL databases, or any other SQL client.

5. Set Up RabbitMQ

Start a RabbitMQ container using the command below:

docker run -d --name rabbitmq \
    -p 15672:15672 \
    -p 5672:5672 \
    rabbitmq:management

6. (Optional) Manage RabbitMQ

Once RabbitMQ is running, you can access its management interface at RabbitMQ Management Interface.

Get started:

To execute the full extraction process, simply run:

python main.py

This command will trigger the complete workflow, starting from the initial data preprocessing stages and continuing through to the final data organization and storage.

Customizing the Workflow:

You can customize the sequence of tasks executed by modifying main.py or adjusting the relevant parameters in the config.yaml file. This allows you to tailor the extraction process to meet specific research needs or to experiment with different data processing configurations.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts