Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pybind11-rdp

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pybind11-rdp

C++/pybind11/NumPy implementation of the Ramer-Douglas-Peucker algorithm (Ramer 1972; Douglas and Peucker 1973) for 2D and 3D data.

  • 0.1.4
  • PyPI
  • Socket score

Maintainers
1

Ramer-Douglas-Peucker Algorithm (c++ binding for python via pybind11)

A speed up (~8000x) version of python version of rdp.

C++/pybind11/NumPy implementation of the Ramer-Douglas-Peucker algorithm (Ramer 1972; Douglas and Peucker 1973) for 2D and 3D data.

The Ramer-Douglas-Peucker algorithm is an algorithm for reducing the number of points in a curve that is approximated by a series of points.

Installation

via pip

pip install -U pybind11-rdp

from source

git clone --recursive https://github.com/cubao/pybind11-rdp
pip install ./pybind11-rdp

Or

pip install git+https://github.com/cubao/pybind11-rdp.git

(you can build wheels for later reuse by pip wheel git+https://github.com/cubao/pybind11-rdp.git)

Usage

Test installation: python -c 'from pybind11_rdp import rdp; print(rdp([[1, 1], [2, 2], [3, 3], [4, 4]]))'

Simple pythonic interface:

from pybind11_rdp import rdp

rdp([[1, 1], [2, 2], [3, 3], [4, 4]])
[[1, 1], [4, 4]]

With epsilon=0.5:

rdp([[1, 1], [1, 1.1], [2, 2]], epsilon=0.5)
[[1.0, 1.0], [2.0, 2.0]]

Numpy interface:

import numpy as np
from pybind11_rdp import rdp

rdp(np.array([1, 1, 2, 2, 3, 3, 4, 4]).reshape(4, 2))
array([[1, 1],
       [4, 4]])

Tests

make python_install
make python_test

Notice

As https://github.com/fhirschmann/rdp/issues/13 points out, pdist in rdp is WRONGLY Point-to-Line distance. We use Point-to-LineSegment distance.

from rdp import rdp
print(rdp([[0, 0], [10, 0.1], [1, 0]], epsilon=1.0)) # wrong
# [[0.0, 0.0],
#  [1.0, 0.0]]

from pybind11_rdp import rdp
print(rdp([[0, 0], [10, 0.1], [1, 0]], epsilon=1.0)) # correct
# [[ 0.   0. ]
#  [10.   0.1]
#  [ 1.   0. ]]

References

Douglas, David H, and Thomas K Peucker. 1973. “Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature.” Cartographica: The International Journal for Geographic Information and Geovisualization 10 (2): 112–122.

Ramer, Urs. 1972. “An Iterative Procedure for the Polygonal Approximation of Plane Curves.” Computer Graphics and Image Processing 1 (3): 244–256.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc