
Security News
Deno 2.4 Brings Back deno bundle, Improves Dependency Management and Observability
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.
This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitting, loading and common experimental settings. It also handles both model selection and risk assessment procedures, by trying many different configurations in parallel (CPU or GPU).
If you used this library for your project, please consider citing us:
@article{pydgn,
author = {Errica, Federico and Bacciu, Davide and Micheli, Alessio},
doi = {10.21105/joss.05713},
journal = {Journal of Open Source Software},
month = oct,
number = {90},
pages = {5713},
title = {{PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs}},
url = {https://joss.theoj.org/papers/10.21105/joss.05713},
volume = {8},
year = {2023}
}
Automated tests passing on Windows, Linux, and MacOS. Requires at least Python 3.8. Simply run
pip install pydgn
pydgn-dataset --config-file examples/DATA_CONFIGS/config_NCI1.yml
pydgn-train --config-file examples/MODEL_CONFIGS/config_SupToyDGN.yml
And we are up and running!
To debug your code you can add --debug
to the command above, but the "GUI" will be disabled.
To stop the computation, use CTRL-C
to send a SIGINT
signal, and consider using the command ray stop
to stop
all Ray processes. Warning: ray stop
stops all ray processes you have launched, including those of other
experiments in progress, if any.
It's very easy to load the model from the experiments (see also the Tutorial):
from pydgn.evaluation.util import *
config = retrieve_best_configuration('RESULTS/supervised_grid_search_toy_NCI1/MODEL_ASSESSMENT/OUTER_FOLD_1/MODEL_SELECTION/')
splits_filepath = 'examples/DATA_SPLITS/CHEMICAL/NCI1/NCI1_outer10_inner1.splits'
device = 'cpu'
# instantiate dataset
dataset = instantiate_dataset_from_config(config)
# instantiate model
model = instantiate_model_from_config(config, dataset, config_type="supervised_config")
# load model's checkpoint, assuming the best configuration has been loaded
checkpoint_location = 'RESULTS/supervised_grid_search_toy_NCI1/MODEL_ASSESSMENT/OUTER_FOLD_1/final_run1/best_checkpoint.pth'
load_checkpoint(checkpoint_location, model, device=device)
# you can now call the forward method of your model
y, embeddings = model(dataset[0])
We provide the data splits taken from
Errica Federico, Podda Marco, Bacciu Davide, Micheli Alessio: A Fair Comparison of Graph Neural Networks for Graph Classification. 8th International Conference on Learning Representations (ICLR 2020). Code
in the examples/DATA_SPLITS
folder.
PyDGN >= 1.0.0 is BSD 3-Clause
licensed, as written in the LICENSE
file.
FAQs
A Python Package for Deep Graph Networks
We found that pydgn demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.
Security News
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.
Security News
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.