You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

pymilvus-pg

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pymilvus-pg

Sync Milvus data to PostgreSQL for validation

0.1.4
pipPyPI
Maintainers
1

PyMilvus PostgreSQL

pymilvus-pg is a Python library primarily designed for validating Milvus data correctness. It achieves this by synchronizing Milvus write operations (inserts, deletes, upserts) to a PostgreSQL database in real-time. By comparing the data in Milvus with the shadow data in PostgreSQL, users can verify the consistency and accuracy of their Milvus deployments. While it facilitates data synchronization, its core utility lies in providing a robust mechanism for data validation.

Features

  • Milvus Client Extension: Extends the MilvusClient functionality.
  • Data Synchronization: Keeps data in Milvus and a PostgreSQL shadow database synchronized.
  • Data Export: Allows exporting collection data from the shadow PostgreSQL instance.
  • Query Correctness Validation: Enables verification of Milvus query results by comparing them against PostgreSQL.
  • Milvus Data Correctness Validation: Enables full data comparison between Milvus and PostgreSQL.
  • Three-Way Validation with LMDB: Built-in LMDB integration (enabled by default) provides automatic error source identification when inconsistencies are detected.

Installation

To install pymilvus-pg, you can use pip after installing PDM or directly if the package is published:

# Ensure you have pdm installed if you are working with the source
# pip install pdm

# Install dependencies using pdm (from project root)
# pdm install

# Or install the package if available on PyPI (example)
# pip install pymilvus-pg

Usage

Here's a basic example of how to use pymilvus-pg:

from pymilvus_pg import MilvusPGClient as MilvusClient
from pymilvus.milvus_client import IndexParams
from pymilvus import DataType
import random
import time

# Initialize the client
# Replace with your Milvus URI and PostgreSQL connection string
milvus_client = MilvusClient(
    uri="http://localhost:19530",
    pg_conn_str="postgresql://user:password@localhost:5432/milvus_shadow",
)

collection_name = f"my_collection_{int(time.time())}"

# 1. Create schema
schema = milvus_client.create_schema()
schema.add_field("id", DataType.INT64, is_primary=True, auto_id=False)
schema.add_field("name", DataType.VARCHAR, max_length=100)
schema.add_field("age", DataType.INT64)
schema.add_field("json_field", DataType.JSON)
schema.add_field("array_field", DataType.ARRAY, element_type=DataType.INT64, max_capacity=10)
schema.add_field("embedding", DataType.FLOAT_VECTOR, dim=8)

# 2. Create collection
milvus_client.create_collection(collection_name, schema)

# 3. Create index for the vector field
index_params = IndexParams()
index_params.add_index("embedding", metric_type="L2", index_type="IVF_FLAT", params={"nlist": 128})
milvus_client.create_index(collection_name, index_params)

# 4. Load collection
milvus_client.load_collection(collection_name)

# 5. Insert data
data_to_insert = [
    {
        "id": i,
        "name": f"item_{i}",
        "age": 20 + i,
        "json_field": {"category": f"cat_{i%3}", "value": i * 10},
        "array_field": [i, i + 1, i + 2],
        "embedding": [random.random() for _ in range(8)]
    } for i in range(10)
]
milvus_client.insert(collection_name, data_to_insert)
print(f"Inserted {len(data_to_insert)} entities.")

# 6. Query data (from Milvus, synchronized to PostgreSQL)
# Wait a bit for synchronization if operations are very fast
time.sleep(1) 
query_res = milvus_client.query(collection_name, filter_expression="age > 25")
print("Query results (age > 25):")
for entity in query_res:
    print(entity)

# 7. Delete data
ids_to_delete = [0, 1, 2]
milvus_client.delete(collection_name, ids=ids_to_delete)
print(f"Deleted entities with IDs: {ids_to_delete}")

# 8. Upsert data
data_to_upsert = [
    {
        "id": i,
        "name": f"updated_item_{i}",
        "age": 30 + i,
        "json_field": {"category": f"cat_updated_{i%3}", "value": i * 100},
        "array_field": [i*2, i*2 + 1, i*2 + 2],
        "embedding": [random.random() for _ in range(8)]
    } for i in range(3, 7) # Upserting IDs 3,4,5,6 (some new, some existing)
]
milvus_client.upsert(collection_name, data_to_upsert)
print(f"Upserted {len(data_to_upsert)} entities.")

# 9. Export data (from PostgreSQL)
# Wait for sync
time.sleep(1)
exported_data = milvus_client.export(collection_name)
print(f"Exported data from PostgreSQL for collection '{collection_name}':")
for row in exported_data:
    print(row)

# Clean up (optional)
# milvus_client.drop_collection(collection_name)

print("Demo finished.")

License

This project is licensed under the MIT License. See the LICENSE file for details (if one exists, otherwise specified in pyproject.toml).

Contributing

Contributions are welcome! Please feel free to submit a pull request or open an issue.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts