🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

pyndeval

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pyndeval

Interface to ndeval.c

0.0.6
PyPI
Maintainers
1

pyndeval

A python interface to TREC's ndeval.c, used for computing diversity retrieval metrics.

Getting Started

From pip:

pip install pyndeval

Or install from source:

git clone https://github.com/seanmacavaney/pyndeval.git
cd pyndeval
python setup.py install

Usage

import pyndeval
from pyndeval import SubtopicQrel, ScoredDoc

# provide qrels as a list of tuples
qrels = [
    SubtopicQrel("0", "a", "A", 1),
    SubtopicQrel("0", "b", "B", 1),
    SubtopicQrel("0", "b", "D", 1),
    SubtopicQrel("0", "c", "C", 1),
]

# provide run as a list of tuples
run = [
    ScoredDoc("0", "A", 9.3),
    ScoredDoc("0", "D", 8.4),
    ScoredDoc("0", "E", 8.1), # not in qrels
    ScoredDoc("0", "B", 7.6),
    # C not retrieved
]

pyndeval.ndeval(qrels, run)
{'0': {
  'ERR-IA@5': 0.3933,
  'ERR-IA@10': 0.3907,
  'ERR-IA@20': 0.3907,
  'nERR-IA@5': 0.8297,
  'nERR-IA@10': 0.8297,
  'nERR-IA@20': 0.8297,
  'alpha-DCG@5': 0.4052,
  'alpha-DCG@10': 0.3998,
  'alpha-DCG@20': 0.3997,
  'alpha-nDCG@5': 0.7868,
  'alpha-nDCG@10': 0.7868,
  'alpha-nDCG@20': 0.7868,
  'NRBP': 0.3906,
  'nNRBP': 0.8620,
  'MAP-IA': 0.5000,
  'P-IA@5': 0.2000,
  'P-IA@10': 0.1000,
  'P-IA@20': 0.0500,
  'strec@5': 0.6666,
  'strec@10': 0.6666,
  'strec@20': 0.6666
}}

Supported measures

pyndeval supports the following measures:

  • ERR-IA@k
  • nERR-IA@k
  • alpha-DCG@k
  • alpha-nDCG@k
  • P-IA@k
  • strec@k
  • NRBP
  • nNRBP
  • MAP-IA

Measures with @k support values from 1-20 (upper limit from ndeval.c).

Measures are provided as a list of strings with the measures= parameter.

pyndeval.ndeval(qrels, run, measures=["ERR-IA@7", "MAP-IA"])

Reusing qrels

If you're running multiple times for the same set of qrels and measures, you can speed it up by building a RelevanceEvaluator object, which caches the internal qrel representations.

ev = pyndeval.RelevanceEvaluator(qrels)
ev.evaluate(run1)
ev.evaluate(run2)
ev.evaluate(run3)
ev.evaluate(run4)

Iterable results

for result in pyndeval.ndeval_iter(qrels, run):
  {"query_id": "0", ...}
for result in ev.evaluate_iter(run):
  {"query_id": "0", ...}

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts